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An overview of sequencing studies and their
application to psychiatric disease




Overview

d I Rationale for studying rare variants
M O e S Population genetics & selection

Application of NGS technologies

D a ta What do the data look like?

Common error modes

Mendelian designs
Multiplex families

D e S i g n S De novo studies

Population-based approaches

Power and rare variants

A n a |ys i S Strategies to improve power

Other potential problems

Current literature

P rOS pects Emerging studies

PGC and sequencing studies







Enthusiasm for studying rare variation in common disease

= Precedent from Mendelian disease genetics
— rare disease alleles strongly increase risk for rare disease

Genome-wide association studies

- “missing heritability” beyond specific, detected common variants
— rare variation effectively not captured by common SNP platforms

Population genetic theory (i.e. natural selection works)
- most new mutations expected to be mildly deleterious
— highly penetrant disease alleles will be selected against
- (accepting viability) at the extreme, de novo mutation is uncensored w.r.t natural selection

Single, highly-penetrant alleles may be easier to characterize functionally
— particularly if the variant induces loss-of-function for a single gene

Next generation sequencing
- because now we can...

— although note that decades of linkage analysis also constituted a window into rare variation and
common disease




Rare and de novo mutations already documented in
schizophrenia (and other psychiatric disease)

Deletion on 22q11.2, 1in 4000 live births Linkage analysis in a large pedigree detects a

(Velo-Cardio-Facial Syndrome, VCFS) segregating translocation with breakpoint in
DISC1 gene

Fluorescence in situ hybridization (FISH)
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Unaffacted individual VCFS patient

. St Clair et al. Lancet 1990; 336:13-6;
~1% of all SCZ patients Blackwood et al. Am J Hum Genet, 2001; 69:428-33

Specific loci

Cases GZ"U"I’;:::}“ From GWAS/CNYV studies, cases have a
— 7 J<\78 creater burden of “singleton” (ultra
Chromosome > rare/de novo) micro-deletions and

o o o — duplications

International Schizophrenia Consortium (2008) Nature
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Enthusiasm versus realism

PERSPECTIVE
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Exome sequencing and the genetic basis of complex traits

Adam Kiezun'216, Kiran Garimella®'¢, Ron Do?*!¢, Nathan O Stitziel>*!¢, Benjamin M Neale>>3,
Paul ] McLaren'2, Namrata Gupta2, Pamela Sklar®”, Patrick F Sullivan®, Jennifer L Moran?,
Christina M Hultman®, Paul Lich in’, Patrik Mag) %, Thomas Lehner'?, Yin Yao Shugart!!,
Alkes L Price®'>1%17 Paul I W de Bakker!>!*!%17 Shaun M Purcell>!” & Shamil R Sunyaev'->!7

Table 2 Summary of gene burden test results for rare variant studies

Trait Gene Test AC?low  ACZ high n P

Triglycerides ANGPTL4 Fisher’s exact 13 2 1,775 0.016"
Triglycerides ANGPTLS Fisher’s exact 9 1 1,775 0.022v
HDL ABCA1 RVE 28 4 519 <0.0001°
APOA1 1 0 519
LCAT 6 1 519
1

Blood pressure SLCI12A1, Fisher's exact 9 626 0.02
SLC12A3, KCNJ1

Obesity Obesity*® Fisher's exact 73 97 757 0.061

Type 1 diabetes IFIH1 Fisher's exact 21 39 960 0.025

Triglycerides APOAS5 Fisher's exact 1 5 765 0.25
GCKR Fisher's exact 5 20 765 0.024
LPL Fisher's exact 8 44 765 2.47 x10°°

APOB Fisher’s exact 85 765 0.008

~

Of genes with rare variants
previously detected in
candidate studies of
common disease, none
would surpass exome-wide
statistical thresholds
(despite the moderately
large samples N)




Recent insights into rare variation from 1000 Genomes and other large-scale
exome sequencing projects: bottom line, there is a lot of it...

ms Research Articles

Evolution and Functional Impact of
Rare Coding Variation from Deep
Sequencing of Human Exomes

Jacob A. Tennessen,'* Abigail W. Bigham,?*t Timothy D. O’Connor,'* Wenging
Fu,' Eimear E. Kenny,® Simon Gravel,® Sean McGee,' Ron Do,*° Xiaoming Liu,°

Goo Jun,” Hyun Min Kang,” Daniel Jordan,® Suzanne M. Leal,’ Stacey Gabriel,*
Mark J. Rieder," Goncalo Abecasis,” David Altshuler,* Deborah A. Nickerson,'

Eric Boerwinkle,®'® Shamil Sunyaev,*® Carlos D. Bustamante,® Michael J.

Bamshad,"?t Joshua M. Akey,'t Broad GO, Seattle GO, on behalf of the NHLBI
Exome Sequencing Project

Deep-sequencing >2000 individuals, conclude the majority of protein-coding variation is :
rare ( 86% of sites have minor allele frequency < 0.5% )
novel ( 82% never observed before )
population-specific (82% of sites )

and under weak purifying selection

Most people have ~300 genes whose function is deleteriously impacted by a rare variant




Frequency spectrum of disease alleles

Unique 1/1,000,000 1/100,000 1/10,000 1/1,000 1/100 1/10

S —

De novo "Private" e . Low-frequency _
mutation mutations Singletons seggregating variants Common polymorphism

Exorpe sequencing Expme sequencing oty GWAS
in families in populations

For complex polygenic disease, working assumption that the pathways hit
by different types of variant will be similar

Motivates strategies that look for convergence across this spectrum







Construct

shotgun library —s =—= Hybridization

//
— \ each ~150bp in length
%

I:ll:]

Genomic DNA Fragments

AGGTCGTTACGTACGCTAC
GACCTACATCAGTACATAG <=
GCATGACAAAGCTAGETGT

Mapping, alignment,
variant calling DNA sequencing

Exome sequencing

/ ~200,000 “targets” (~exons)
\

from ~20,000 genes
~30-50Mb of genomic sequence

N

Wash =

Each targeted site, on average,
covered by a hundred or more
short reads, each ~70-100 bases

XN =
Pulldown / &

e
.:\ NG

— I
—/ . . « .
~20,000 variants per individual
Captured DNA ~4M in whole-genome

Bamshad et al, Nature Reviews Genetics, 2011




The Picard/GATK NGS analysis pipeline

Phase 1: NGS data processing Phase 2: Variant discovery and genotyping Phase 3: Integrative analysis

—— Typically by lane ——Typically multiple samples simultaneously but can be single sample alone——

. Sample 1 Sample N . Raw ( Raw ’ Raw
\ )
|
1

. Ext | dat:
BWA | Mapping GATK/samtools N
Pedigrees

Known
variation

Population Known
structure genotypes

Local
realignment

GATK/samtod

EAAEE R LA S 4EN

Duplicate
marking

Variant quality
recalibration

GenomeSTRIF TT-
Structural
variation (SV) Genotype BEAGLE
refinement _|: JOINT CALLER

GATK Base quality

recalibration

Analysis-ready | _ _ _ _ - Analysis-ready
Raw variants T PLINK/S EQ




Exomes versus genomes

Target ~1% of the genome (primarily coding exons in CCDS/RefSeq)

~10% of the cost of sequencing the whole genome

Typically “deep coverage”, meaning high probability of detecting even
variants observed only once

Pros/cons (versus whole-genome sequencing)

+ Enriches for the regions of the genome most strongly associated with disease. Even for
common disease, where many GWAS hits do not map to genes, the relative rate of hits
in genes is still much greater.

Allows function to be ascribed to variants (filtering for deleterious variants, etc)
Any positive result is more likely to be readily interpretable
Currently more affordable to apply to large samples

Targeting procedure introduces extra costs, steps in the sequencing pipeline, and
biases in coverage

Expanding definition of “the exome” (regulatory regions, rare transcripts, ncRNAs, etc)




Deep versus low-pass sequencing

= For a fixed S amount of sequencing, how should | distribute it among
samples?

Rt 100 individuals

Mean 100x coverage Mean 10x coverage
Most sites >30x coverage Many sites 0-2x coverage

For low to moderate frequency variants, will
be more powerful to detect variants: a less
accurate sampling of a larger pool of variation

Much better detection of singletons (inc. de
novo mutations) and very rare variants, but in
a smaller pool of variation

But can take advantage of the fact that reads
at nearby sites are often informative due to
local LD. Imputation will often be able to infer
individuals’ genotypes even at sites with, e.g.
<<10x coverage

Greater depth allows other analysis, e.g.
a) read depth analysis to detect CNVs
b) better ability to QC/filter out bad variants




Exome sequencing =» Exome chip

" Genotyping using microarrays is still cheaper and more accurate
than exome-sequencing

A very large proportion of all low frequency (e.g. >0.5%) coding
variation will already have been observed in the 10,000+ exomes
collectively sequenced at various centers

Consortium to select a panel of these SNPs and manufacture an
lllumina array at a reasonable price point, to enable testing in
very large cohorts




What to expect from exome sequencing

From 1 individual (“case” or “control”)

~15,000 — 20,000 variant sites

~10,000 of these nonsynonymous (of which 200-300 will be novel)
~100 nonsense mutations (of which ~10 will be novel)

Vast majority of sites are common and known (in dbSNP) : over 95%

From 5000 individuals

~15,000+ gene-disruptive mutations (nonsense, splice, frameshift), of which most are novel
~300,000 missense mutations (~100,000 — 150,000 of which are “damaging”)

~200,000 silent mutations

~50% of all sites observed only once in the sample (“singletons”)

Majority of variants very rare and novel (not in dbSNP)




Raw read-depth for one individual (all targets along exome)
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Calling CNVs

Normalised exome from exome data
read-depth data

XHMM: Fromer et al (AJHG. 2012)
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ACGTGACTGACTG CATGACTGTATG CGATGAT




Common diagnostics of noise and bias in variant calling
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ACGTGAGGGGGGGGGGTGGCTGTATGCGATGAT ACGTGACTGACTGCATGACTGTATGCGATGAT ACGTGACTGACTGCATGACTGTATGCGATGAT

Clusters of SNPs, indicative of mis-mapping reads (e.g. due to

Homopolymer runs, difficult sequence context Reads are inconsistent with two distinct haplotypes cryptic indels, or other region of high homology)




A validated de novo mutation...

... and one that did not

Gray lines = 10s-100s of reads with reference
allele piled up across region

: reads containing a non-reference site

Parents also have  Both parents Proband also has
some (red) non-  heterozygous @apparentde novo
reference reads for adjacent  deletion nearby

base (black)

IGV : Integrative Genome Viewer




Data to play with: 1000 Genomes

1000 Genomes
A Deep Catalog of Human Genetic Variation

Home About Data Analysis Participants Contact Browser  Wiki

A great resource for publicly available NGS data.
Both read-level data (BAM) and called variant/genotype datasets (VCF) available.

Whole genome and whole-exome.

VCF: An extensible text-based format for representing variant and genotype
information and meta-information.

Tools to work with VCFs: PLINK/Seq, vcftools, vtools, others




What does this genotype mean?

GT hard genotype call
AD and DP read-depth information
GQ quality score

PL is (phred-scaled) genotype-likelihoods (soft-calls)

— Above, the heterozygote is 100 as likely as the reference homozygote

Phred quality scores are logarithmically linked to error probabilities
Phred Quality Score Probability of incorrect base call Base call accuracy

o mw
1in 100 99 %

1in 1000 99.9 %

1in 10000 99.99 %

1in 100000 99.999 %

Q=-10 log P P =107




= Aless compelling genotype call

= Heterozygote is most likely call

— the reference homozygote has likelihood of 1092 =0.12 compared to heterozygote

= But, not a high confidence call
— Based on a relatively low number of reads (7)

— Ratio of reference to alternate reads skewed from 50:50 (6:1)
— Rule of thumb in deep exome data: PL > 20 or 30 and DP > 10 defines “high confidence”




Transition/transversion ratio as a figure of merit

two-ring purines one-ring pyrimidines

Read depth (binned to 100 quantiles)

Transitions Transitions

Mean Ti/Tv
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Mean total depth per individual : 100 intervals, 118077 variants

Twice as many possible transversions as transitions: in practice transitions (A/G, C/T) more common

Expected Ti/Tv (or Ts/Tv): Errors: ~0.5 Real exome variants: ~3.0

Study how Ti/Tv (or other metrics such as dbSNP%) vary with technical attributes (e.g. read depth)

This type of process formalized in GATK’s variant quality score recalibration (VQSR) procedure




Functional annotation of variants

Missenses not all equally likely

Type of variation in
to have an impactful change on protein

amino-acid sequence

PolyPhen2: predicting the damaging effects of missense mutations
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Adzhubei et al. Nature Methods (2010).

1) Truncates protein (nonsense)
2) Changes protein (missense)
3) Doesn’t change protein (silent)

In silico prediction of “damaging”
or “deleterious” mutation




Functional annotation of variants

In large samples, allele frequency can be used to evaluate prediction methods:
natural selection implies that more damaging mutations should on average be rarer

% singletons

Intronic (off-target)
Silent
Missense

Benign

Possibly damaging

Probably damaging
Essential splice site

Nonsense




Different prediction methods diverge...

Mean correlation between raw scores only 0.35 (median 0.11)

Gerp(NS)  Gerp(RS)  PhyloP  PPH2(HumDiv) PPH2(HumVar) SIFT

PPH2(HumDiv)
PPH2(HumVar)
SIFT
LRT
MutationTaster




...but appear to have (independent) information

Propotrion of missenses that are singleton
Mean missense

PPH2 HumDiv
PPH2 HumVar
LRT

SIFT

MT

Any
All




Annotation issues

Which transcripts to use?

- Trade-offs using more or less restrictive definitions of the CDS (CCDS, RefSeq, ENSEMBL, etc)
— Multiple transcripts v.s. aggregated “gene" v.s. a single canonical transcript per gene
— Prioritizing transcripts based on expression in tissue of interest and/or RNA-seq data, etc

Catching likely errors
“Rogue transcripts”, e.g. many stop codons in reference, CDS not mod 3, invalid start codon

Complex variants

— Multi-nucleotide mutations often misannotated
— Edge cases: a single base insertion at the intron/exon boundary: splice or frameshift?

Weighting within existing functional classes

— Optimal use of in silico prediction tools for deleteriousness of missense variants

Noncoding variants

— Variants in ncRNAs and other functional elements in exome-seq: miRNAs, UTRs, etc







Study designs

Mendelian disease and “filtering” approaches

— Assumes very rare disease, very highly penetrant mutation and low locus heterogeneity

Multiplex families to ascertain “familial”(*) cases
— Assumes a private mutation of large effect largely accounts for disease in the family
— Assumes that co-segregation will be informative

Trio studies of “sporadic” cases(*)

— Focus on de novo rather than inherited mutation
— Particularly suitable for early-onset diseases that reduce reproductive success

Population-based case/control studies

- Less efficient to the extent that private/de novo mutations account for most disease risk
— But a more general, potentially more scalable design (e.g. if families hard to collect)
— Likely(?) better suited to tackle more heterogeneous & complex architectures

*Yang et al (2010) Sporadic cases are the norm for complex disease. EJHG.




Rare variant burden analysis

Prevalence of disease

Prior probability of carrying a disease allele

Penetrance of (an average) disease allele




Rare variant burden analysis

P(D) Prevalence of disease

P(GD) Prior probability of carrying a disease allele

P(D | GD) Penetrance of (an average) disease allele

P(D|G,) PG
P(GDl D) — ( | D) ( D) Allele frequency in cases
P(D)

P(GD | D) Allele frequency in controls




Mendelian disease
P(D) V. LOW Prevalence of disease

P(GD) V. LOW Prior probability of carrying a disease allele

P(D | GD) Penetrance of (an average) disease allele

V. LOW

P(D|G,) PG
P(GDl D) — ( | D) ( D) Allele frequency in cases
P(D)

V. LOW

P(GDl D) V. LOW Allele frequency in controls




Filtering approaches and Mendelian disease

Exome sequencing identifies MLL2 mutations as a cause
of Kabuki syndrome Nat Genet (2010)

Sarah B Ng'”7, Abigail W Bigham?7, Kati ] Buckingham?, Mark C Hannibal*?, Margaret ] McMillin?,

Heidi I Gildersleeve?, Anita E Beck®?, Holly K Tabor*?, Gregory M Cooper', Heather C Mefford?, Choli Lee',
Emily H Turner!, Joshua D Smith!, Mark J Rieder!, Koh-ichiro Yoshiura*, Naomichi Matsumoto®, Tohru Ohta®,
Norio Niikawa®, Deborah A Nickerson', Michael ] Bamshad!~* & Jay Shendure!

Table 1 Number of genes common to any subset of x affected individuals.

Subset analysis
(any x of 10) 1 2 3 4 5 6 7 8 9 10
NS/SS/I 12,042 8,722 7,084 6,049 5289 4,581 3,940 3,244 2,485 1,459

Not in dbSNP129 or 7,419 2,697 1,057 488 288 192 128 88 60
1000 Genomes

Not in control exomes 7,827 2,865 1,025 399 184 90 50
Not in either 6,935 2,227 701 242 44 16

Is loss-of-function (non- 753 49 7 3 2
sense or frameshift indel)




Much harder for complex, common disease:
basic filtering approaches not a good strategy

Study design
50 cases, 1000 controls

Filtering” strategy
1% disease, MAF = 0.001

P(risk allele observed in controls only)

P(multiple cases, no controls)

Genotypic
40 relative risk

One is still just as likely to observe this rare disease allele of 20-fold increase in risk
in a large sample of (screened) controls, compared to observing it recurrently in 50 cases




Application of “filtering” to common disease

Human Mutation

OFFICIAL JOURNAL

5 Mutations of ANK3 Identified by Exome Sequencing are HGV§
2 O autism p o b an d ) Associated with Autism Susceptibility VARIATION SOGIETY

www.hgvs.org

Cheng Bi,"? Jinyu Wu,*' Tao Jiang,* Qi Liu,® Wanshi Cai,’ Ping Yu, Tao Cai,*® Mei Zhao,' Yong-hui Jiang,>* and
Zhong Sheng Sun®&

o V4 A l\
Detect “novel” variants

Whole-exome sequencing
V

SNVs/indels: 25,497/605

Prioritize based on function/ MVs/NVs: 10,007/93 +/S1569A R
\

SS/RT/FS: 503/19/315 . .
ge ne Filtered by HapMap, MEM f\ \

dbSNP135, 1000 Genome GCA TCTC GCATCTC

2000 Caucasian exome G
Novel SNVs & indels: 164 c

Filtered by non- N2 Homo sapiens

Whatever is left is the pathogenic mutations EONNRER coxilla gorills

el Loxodondonta africana
L o 7) Novel SNVs & indels: 68 B8 Canis familiaris
ﬁndlng (ANK3) . R . i NN EERes Tursiops truncatus
Function/signaling analysis P (- ctolagus cuniculus
§ Rattus norvegicus

SDVA ;; Gallus gallus
Confirmation study SN2ty Danio rerio

Novel missense: 7

Find other ANK3 mutations in
other individuals: “additional
support”

4088, 4377




Novel ANK3 mutations in healthy individuals

Exome sequence data from ~2500 healthy Caucasian individuals
— Part of the Swedish Schizophrenia Seqeuncing Study

Screen for novelty against dbSNP (>50,000,000 variants)

95 novel mutations detected in controls

- 1 nonsense

— 32 missense
— 24 rated as “damaging” by PolyPhen2

In other words, if you look at enough samples and/or genes, it isn’t
hard to pull out “interesting mutations”




Familial co-transmission to filter variant lists
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Fig. 1. In autosomal recessive disorders, the disease gene must
be located in a chromosomal region in which the paternal and
maternal haplotypes are both identical-by-descent (IBD = 2).

Robinson et al, 2011




Simulation: using co-segregation in common disease

Index/proband
affected carrier (het)

Family: proband and 6 1t-degree relatives

Ascertainment: require at least X of 6 to
be affected, where X=1,2 or 3.

Disease: 1% prevalence, h’=.6, c?=.05

Genetic model:

MAF: 1/100, 1/1,000 and 1/10,000
GRRs: range for each MAF (next table)
Dominant gene-action

Questions:

1)

2)
3)

4)

How likely an affected relative shares the
index’s rare allele?

How likely an unaffected relative shares it?
Expectation that a 1%t-degree relative is
“consistent”?

Probability of complete co-segregation of
allele and disease in family?




Power/sample size for a standard,
population-based case/control study

N for 80% power
at alpha =

MAF GRR <0.01 <5e-8 Penetrance

1/100 1802 6110 0.020
610 2070 0.029
344 1168 0.038
236 800 0.046

1/1,000 PARE] 7303 0.050
784 2661 0.098
340 1156 0.193
219 743 0.284

1/10,000 3309 11223 0.199
1537 5213 0.397
1002 2643 0.593
744 2524 0.788




P( affected relative shares allele) P( unaffected relative shares allele )

“=1AR=2AR 3 AR ==1AR="2AR 3 AR

0.0
MAF: 1/100 1/1,000  1/10,000 1/100 1/1,000  1/10,000
OR: 2-3 5-30 20-80 2-3 5-30 20-80




P( any one 15t degree

relative co-segregates ) P( whole family co-segregates )

“=1AR="2AR 3 AR “=1AR=2AR 3 AR

~1% under
the null

0.0
MAF: 1/100 1/1,000  1/10,000 1/100 1/1,000  1/10,000
OR: 2-3 5-30 20-280 2-3 5-30 20-280

1) Under all models here, it is more likely than not that the true disease allele will not segregate with disease

2) In contrast, 1% of all of the proband’s rare null alleles would be expected to perfectly co-segregate by chance
3) Naturally, larger families and/or more “Mendelian” alleles would change the balance

4) (But unlikely that different families will segregate at the same locus given polygenicity, linkage findings...)




1/1000 20-fold variant example, for a disease with 1/100 prevalence

Penetrance, P( disease | genotype )
Reference
Heterozygote

Homozygote

But only 4% of cases would be expected to carry such an allele

P( genotype | affected )
Reference
Heterozygote

Homozygote

Even under the most optimistic circumstances, for common diseases:
1) the vast majority of patients will not carry the risk allele
2) the majority of carriers will not be affected (penetrance < 50%)




Rare variants & complex disease
P(D) MED/LOW Prevalence of disease

P(GD) LOW Prior probability of carrying a disease allele

P(D | GD) MED/LOW Penetrance of (an average) disease allele

MED/LOW LOW

P(D|G,) P(G
P(GDl D) = ( D) ( D) LOW Allele frequency in cases

P(D)

MED/LOW

P(GD | D) LOW Allele frequency in controls




Ways to improve power beyond {tsample N

(In loose terms,) ideas to drive up P(G,|D) - P(GD|B) ce of disease
Ascertain on family history: increase P(G))
lisease allele
Aggregate tests (“super-alleles”) : increase P(G,)
Subsets of genes/variants : decrease P(G,) but increase P(D|G,) ®
lisease allele
Extreme/subtypes of disease: decrease P(D), increase P(D|G))
“Ultra-healthy” controls : reduce P(GD|B)

Etc. 2Ncy in cases

(Of course, not all equally feasible or effective...)

LOW Allele frequency in controls







The challenge of interpreting rare-variant studies:
a lot of the data will look either like...

Alternate allele | Reference allele
Case
Control

Alternate allele | Reference allele
Case
Control




Gene based tests

Group variants within a region and test for aggregate distributional
differences between cases and controls (or with a quantitative trait).

For exome studies, “the gene” is the natural unit of grouping.

A large number of tests developed in the last couple of years. Main
differences:

1) Are all variants assumed to have a similar magnitude of effect, or does the test
allow for differential weighting, e.g. rarer variants can have larger effects?

Are all the variants assumed to have similar direction of effect, or does the test
allow for a mixture of risk and protective variants in the same region?

Practically, can covariates be included? Application to quantitative traits? Reliance
on permutation versus accurate asymptotic statistics.




Cohort allelic sums test (CAST),
Morgenthaler & Thilly (2007)

Burden

Burden of case-specific variants
CMC (Li & Leal, 2008)

Madsen & Browning (2009)
Variable-threshold (Price et al, 2010)
C-Alpha (Neale et al, 2010)

SKAT (Wu et al, 2011)

(many other variations upon these
themes)

Carrier rate of 1+ rare allele compared
between cases and controls

Count of rare alleles compared between cases
and controls

Burden of cases-only variants, assessed by
permutation

Combines collapsed rare variant counts with
more common alleles

Up-weight rarer variants in a burden test
analytically

Optimal definition of “rare” found empirically
from the data, adjusted by permutation

Frames a 2-sided test, allowing a mixture of
risk and protective variants

Generalization of C-Alpha based on kernel
machine regression




Burden analyses in population-based exome studies

To a large extent, both GWAS and CNV studies of psychiatric disease initially relied
on demonstrating genome-wide burden effects

- Genome-wide burden of rare microdeletions and duplications in AUT and SCZ

— Polygenic analysis of GWAS data in SCZ and BIP

Following this, seems likely we’ll end up following a similar path for sequencing
studies. However, the high baseline levels of rare SNVs means that (unlike for rare,
large CNVs) we would not expect a simple “exome-wide increased burden of
deleterious SNVs” analysis to yield much.

Need to focus either on specific classes of variant, or classes of gene in which to
frame burden questions, i.e. that we believe are a priori more likely.

Demonstrated increased exome-wide burden of particular classes of SNV
- Gene-disruptive de novo mutation in autism
— Rare-recessive loss-of-function mutations also in autism

Similar logic to stratify by class of gene (as well as SNV type), based on candidates

and/or prior genetic literature
— Do genes flagged by de novo or CNV or GWAS studies show an increased burden in cases?
- Do genes involved in candidate “pathways” show an increased burden?




Population stratification

Under geographically realistic models of gene-flow, methods that successfully
correct population of common variants do not necessarily work well for rare variants

Stratified common variation Stratified rare variation
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Mathieson & McVean (2012) Nat Genet.




Population homogeneity and rare variants

In gene-based tests, one often uses the sample frequency to define

which variants are “rare”
— sample frequency as an estimate of population frequency as a proxy for causal potential

Potential problems when dealing with heterogeneous samples, even if

false positives are controlled
— “Singleton” allele in a large, homogeneous sample likely has low population frequency
“Singleton” carried by the one Asian in an otherwise Caucasian sample likely won’t

= For rare variant tests, a single individual can often have a strong

leverage on the sample test statistic
— An 8/0 becoming an 8/1 can make a result much less impressive, even in large sample

— For common variants, or rare variant tests across many genes, harder for a small proportion
of individuals to have a great influence




Heterogeneity and power: simulation

= Three gene models with equivalent power in a standard population-
based case/control in population “A”

— 1000 case/control pairs; each has ~77% power for type | error 0.001 in simple burden test

Population “A” (N=1,000 & 1,000)
Genic/aggregate allele frequency Mean genotypic relative risk
1/ 10,000
1/1,000
1/5

= Second population, different properties
— i.e. null hypothesis is true

Population “B” (N=100 & 100)

‘ Genic/aggregate allele frequency ‘ Mean genotypic relative risk \




What happens in a combined analysis?

Here, rare variants are “more sensitive” to inclusion of unassociated alleles
from additional samples and different populations

1.00

" MAF=0.0001
" MAF=0.001

. W MAF=0.2

Pop A. Pop A+B.

Note: A+B test conditions on population —i.e., type | error is still controlled, but power is reduced




Analysis questions for de novo studies

Is the rate of mutations higher than { in controls | expected }?

Is the ratio of { nonsense } to { missense } higher?

Is any particular gene recurrently hit, more than expected by chance
(given total # of mutations, coverage of exome, gene size, mutation
rate)?

Are genes with de novos more closely related (in terms of functional
class, or position within PPl or co-expression network, etc)?




Finding “recent” mutations in populations

Using patterns of shared ancestry between
seemingly unrelated individuals to flag “recent” mutations

Most recent common
ancestor for region [l

Most recent common
ancestor for region

i
N\

de novo
mutation...

..transmitted to
offspring

..transmitted to

offspring
Sequencing

Study

Mutation must post date most recent common ancestor

Compared to all singleton mutations, those flagged as “recent”
are more likely to be novel and to be nonsense mutations
(as are de novo mutations).

[ data from Swedish Sequencing Study ]

“Recently de novo” mutations transmitted
to cases: unless complete selection and
penetrance, expect enrichment

2 3 4

de novo 1

Number of generations since mutation arose

Age of disease mutation | observed in a case?
Results from simulation, modeled on mutation rate,
penetrance and estimated selection coefficient of the
15q13.3 deletion.

Nadia Solovieff




APPLICATIONS

(not any kind of comprehensive review: rather, just highlighting a couple
of approaches that clearly didn’t work and a couple that clearly did)



“Classical (aka 2005)” candidate gene sequencing

Deep resequencing and
association analysis of
schizophrenia candidate genes

Molecular Psychiatry (2013) 18, 138-140; doi:10.1038/mp.2012.28;
published online 3 April 2012

In 2005, we selected 10 genes for which there was reasonable
evidence for involvement in the etiology of schizophrenia (COMT,
DAOA, DISC1, DRD2, DRD3, DTNBP1, HTR2A, NRG1, SLC6A3 and
SLC6A4, Supplementary Table S1)." Although these genes have not
received support from far larger and comprehensive subsequent
studies, and may not contain common etiological variations,?
it is possible that they contain uncommon variations of etiological
importance. To test this hypothesis, we conducted a multistage
resequencing study.

Crowley et al (2012) Mol Psych.

~700 cases, ~700 controls

No support that rare variants
in these genes play a significant
role in schizophrenia risk.




Early exome studies in SCZ delimit the genetic architecture

Exome Sequencing Followed by Large-Scale Genotyping
Suggests a Limited Role for Moderately Rare
Risk Factors of Strong Effect in Schizophrenia

Anna C. Need,1.23* Joseph P. McEvoy,3 Massimo Gennarelli,45 Erin L. Heinzen,1.2 Dongliang Ge,!
Jessica M. Maia,! Kevin V. Shianna,!2 Min He,! Elizabeth T. Cirulli,! Curtis E. Gumbs,! Qian Zhao,!
C. Ryan Campbell,! Linda Hong,! Peter Rosenquist,® Anu Putkonen,” Tero Hallikainen,”

Eila Repo-Tiihonen,” Jari Tiihonen,’.8 Deborah L. Levy,® Herbert Y. Meltzer,10

and David B. Goldstein!/11.*

Exome sequenced 166 cases
Selected 5,155 variants (e.g. novel, seen in multiple cases)

Genotyped in further 2,617 cases, 1,800 controls

No single variant study-wide significant.

“Rather, multiple rarer genetic variants must contribute substantially to the
predisposition to schizophrenia”




Focus on unusual genomic events

Rare Complete Knockouts in Humans:
Population Distribution and Significant Role
in Autism Spectrum Disorders

Elaine T. Lim,"45:6.7 Soumya Raychaudhuri,*¢° Stephan J. Sanders,'® Christine Stevens,* Aniko Sabo,"

Daniel G. MacArthur,:4.6 Benjamin M. Neale,:4.5.6 Andrew Kirby,!.4:6 Douglas M. Ruderfer,1.3:4.5.6,8,12,14,15

Menachem Fromer,1:3:4.5.6,8,12,14,15 Monkol Lek, '+ Li Liu,'® Jason Flannick,!-24¢ Stephan Ripke,!#> Uma Nagaswamy, "
Donna Muzny,'" Jeffrey G. Reid,!" Alicia Hawes,'" Irene Newsham,!' Yuanqing Wu,'! Lora Lewis,'! Huyen Dinh,
Shannon Gross,!! Li-San Wang,'® Chiao-Feng Lin,'°® Otto Valladares,'® Stacey B. Gabriel,* Mark dePristo,*

David M. Altshuler,'.24.6 Shaun M. Purcell,’-3:4.5.6,8,12,14,15 NHLBI Exome Sequencing Project, Matthew W. State,®

Eric Boerwinkle,':2! Joseph D. Buxbaum,13:14:1516,17 Edwin H. Cook,22 Richard A. Gibbs,'! Gerard D. Schellenberg,2°
James S. Sutcliffe,2® Bernie Devlin,24 Kathryn Roeder,'8 and Mark J. Daly?:4.5.6:*

Table 1. Population Distribution of Rare and Common LoFs

Average Number of Number of Unique Genes Average Number of Number of Unique Genes
Homozygous Variants with a Homozygous Variant ~ Heterozygous Variants with a Heterozygous Variant

Rare (<5%) LoFs 0.05 variants per individual ~ 33 genes 18 variants per individual 3,409 genes
Common (>5%) LoFs 5 variants per individual 96 genes 36 variants per individual 99 genes

The average number of rare (<5%) and common (>5%) homozygous LoF variants, as well as the average number of such variants calculated from the
Bl case-control data set.

Excess of rare complete knockouts provides support for inherited component in ASD
3% contribution to ASD risk for rare autosomal complete knockouts

2% contribution to ASD risk in males from X-linked complete knockouts




One of four recent autism trio studies

Neuron

De Novo Gene Disruptions in Children
on the Autistic Spectrum

Ivan lossifov,:® Michael Ronemus,-¢ Dan Levy,! Zihua Wang,! Inessa Hakker,! Julie Rosenbaum,! Boris Yamrom,’
Yoon-ha Lee,! Giuseppe Narzisi,! Anthony Leotta,! Jude Kendall,' Ewa Grabowska,! Beicong Ma,! Steven Marks,’
Linda Rodgers,! Asya Stepansky,' Jennifer Troge,! Peter Andrews,! Mitchell Bekritsky,! Kith Pradhan,! Elena Ghiban,!
Melissa Kramer,! Jennifer Parla,' Ryan Demeter,2 Lucinda L. Fulton,2 Robert S. Fulton,2 Vincent J. Magrini,2 Kenny Ye,3
Jennifer C. Darnell,4 Robert B. Darnell,#5 Elaine R. Mardis,2 Richard K. Wilson,2 Michael C. Schatz,!

W. Richard McCombie,! and Michael Wigler'-*

343 families, each with a single child on the autism spectrum and 1+ unaffected sibling
No significant difference in de novo missense rate in affected vs. unaffected children
Gene-disrupting mutations (nonsense, splice site, frameshifts) twice as frequent

Estimate 350 — 400 autism susceptibility genes

Many of the disrupted genes associated with the fragile X protein, FMRP, reinforcing links
between autism and synaptic plasticity

Broadly similar picture in other studies (Neale et al.; O’Roak et al.; Sanders et al., Nature 2012)

Combining data, individual genes recurrently hit by disruptive mutations can be identified.




In the pipeline...

As well as the published large-scale sequencing in autism in 2012 and
smaller published schizophrenia de novo studies, other emerging large-
scale projects (e.g. as presented at WCPG, Hamburg): e.g.

Exome sequencing in schizophrenia in >5000 individuals (Swedish, population-based)
UK10K sequencing study including schizophrenia

Exome sequencing in >600 trios (Bulgarian)

Multiple moderately-sized exome studies in bipolar disorder (population and family)

On balance, seems clear (for schizophrenia) both that a) promising and
convergent results are emerging, but b) not “game-changing” at this
point and harder to extricate signal than, e.g., for autism.

Rather (as PGC’ers might agree), 2012 was definitely the year of GWAS
delivering, for schizophrenia at least...



PGC2 and sequence data

Several emerging disease-focused sequencing consortia
— Autism Sequencing Consortium
— Bipolar disorder Sequencing Consortium

Different models:
“Share BAMs”
Pool raw data, establish joint-calling pipeline(s), centralized data repository / analysis hub
cf. PGC CNV model

“Share VCFs”
Variants called at individual sites, attempt to reconcile/merge downstream for central analysis
cf. PGC GWAS model

“Share results”
All analyses performed centrally, share all case/control counts and meta-information
cf. standard “meta-analysis” model from GWAS

“Lookup/replication”
Loose consortium of groups that agree to look up specific sites of interest in a directed manner
cf. replication samples included in PGC GWAS efforts

“Targeted genotyping”
As above, but with facility to perform large-scale genotyping of select rare variants across many cohorts
cf. aspects of PsychChip development

In all cases, possible to share best practice from an analytic perspective, e.g. via the central
analysis group.
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