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Caveat #1

45 minutes is barely enough time to do this topic justice.

Good conceptual overviews:

Hutter CM, Mechanic LE, Chatterjee N, Kraft P, Gillanders EM. Gene-environment interactions in
cancer epidemiology: a National Cancer Institute Think Tank report. Genet Epidemiol
2013;37(7):643-57

Ahmad S, Varga TV, Franks PW. Gene x environment interactions in obesity: the state of the
evidence. Hum Hered 2013;75(2-4):106-15

Good statistical introductions:

Kraft P, Hunter D. The challenge of assessing complex gene—gene and gene—environment
interactions. In: Khoury MJ, Bedrosian S, Gwinn M, Higgins JPT, loannidis JPA, Little J, eds.
Human Genome Epidemiology (2nd ed.) New York: Oxford University Press, 2010.

Chatterjee N, Mukherjee B. Statistical approaches to studies of gene-gene and gene-environment
interactions. In: Rebbeck TR, Ambrosone CB, Shields P, eds. Molecular epidemiology: applications
in cancer and other human diseases New York: Informa Healthcare, 2008.



Caveat #2

All of my examples will be drawn from cancer
epidemiology and the epidemiology of obesity.



Outline

Definition and Notation

Leveraging GxE Interactions to Discover Risk Markers
State of the science: cancer and obesity

Practicalities
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[Flew epidemiological grant applications now fail to
identify the establishment of ‘gene—environment
interaction’ as a primary aim.

Yet much of this discussion is as careless in its use of

terms as the early epidemiological literature that first
prompted debate about the topic 40 years ago...

Clayton (2012) Int J Epidemiol



Biological interaction, public health
interaction, and statistical interaction
are distinct concepts.

Siemiatycki and Thomas (1981) Int J Epidemiol; Thompson (1991) J Clin Epidemiol;
Greenland and Rothman (1998) Modern Epidmiology
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Potter Stewart

Biological Interaction

| shall not today attempt
further to define the kinds of
material | understand to be
embraced within that
shorthand description; and
perhaps | could never succeed
in intelligibly doing so. But |
know it when | see it...



Alcohol, ADH and ALDH, and Cancer

Ethanol

CH;CH-OH

Gene families
involved

12

T

ADH

Acetaldehyde Acetate
CARCINOGENIC
» CH;CHO T » CH3CHOOH
ALDH

Brennan (2004) Am J Epidemiol; Wu et al. (2013) Genet Epidemiol
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ADH1B GG ADH1B GA/AA ADH1B GG ADH1B GA/AA
ALDH2 GG ALDH2 GG ALDH2 GA/AA ALDH2 GA/AA

ADH1B and ALDHZ2 genotypes

Figure 2 Plots showing the ORs for ESCC in alcohol drinkers and
nondrinkers with different ADHIBrs1042026 and ALDHZrs11066015
genotypes. The vertical bars represent the 95% Cls. The horizontal dashed
line indicates the null value (OR = 1.0).

Wu et al. (2012) Nat Genet



The GXxE Poster Child: PKU

Dietary protein

TERATOGENIC! / \

FPhenylpyruvic = | Phenylalanine S/ f—=| Tyrosine
acid

Phenylketonuria

Melanin | | Proteins | | Dopamine

http://medical-dictionary.thefreedictionary.com/phenylketonuria; Scriver CR (2007) Hum Mutat



http://medical-dictionary.thefreedictionary.com/phenylketonuria
http://medical-dictionary.thefreedictionary.com/phenylketonuria
http://medical-dictionary.thefreedictionary.com/phenylketonuria

The GXxE Poster Child: PKU

Completely penetrant: exposed carriers get the
disease if untreated

Penetrance consistent with biological mechanism:
failure of phenylalanine metabolism

A preventive intervention exists: remove
phenylalanine from the diet

This intervention is too costly to apply to the general
population, so targeting carriers makes sense



Sufficient Component Cause/
Counterfactual Interaction

“IW]e may be interested whether, for some
individuals, an outcome occurs if both of two
exposures are present but not if only one or the other
is present.”

Distinct from “biological interaction,” although often
referred to as such.

Under strong assumptions, a specific form of statistical
interaction—departure from additivity on the absolute risk
scale—implies interaction in this sense.

Vanderweele and Robins (2007) Epidemiology; Lawlor (2011) Epidemiology;
Vanderweele (2011) Epidemiology



Sufficient Component Cause/
Counterfactual Interaction

“IW]e may be interested whether, for some
individuals, an outcome occurs if both of two
exposures are present but not if only one or the other
is present.”

This is not necessarily the same as intuitive notions of
“biological interaction.” Consider the 1986 World Series: it
took both Bill Buckner’s error and Ray Knight’s earlier
single for the Red Sox to lose Game 6. But the two events
were not dependent or contemporaneous.

Vanderweele and Robins (2007) Epidemiology; Lawlor (2011) Epidemiology;
17 Vanderweele (2011) Epidemiology



Public Health Interaction

“[P]Jublic health interactions correspond to a situation
in which the public health costs or benefits from
altering one factor must take into accout the
prevalence of other factors.”

E.g. carriers of a particular allele may benefit
disproportionately from a risk-reducing intervention.

If “public health benefit” is measured in terms of reducing
incidence, this corresponds to departures from additivity
on the absolute risk scale.

Siemiatycki and Thomas (1981) Int J Epidemiol;
18 Greenland and Rothman (1998) Modern Epidemiology ; Clayton (2012) Int J Epidemiol



Public Health Interaction

“[P]Jublic health interactions correspond to a situation
in which the public health costs or benefits from
altering one factor must take into accout the
prevalence of other factors.”

Presence of a public health interaction need not imply that
a targeted intervention strategy is ideal: if the intervention
is inexpensive and risk-free, a population-based strategy
may be better.

19 Rose (1985) Int J Epidemiol



Statistical Interaction

 “By interaction or effect [measure] modification we
mean a variation in some measure of the effect of an
exposure on disease risks across the levels of [...] a
modifer. [...] The definition of interaction depends on
the measure of association used.”

* |In other words, a statistical interaction between two
factors refers to departure from an additive effects
model on a particular scale

Thomas (2004) Statistical Methods for Genetic Epidemiology



Simple example

1 if carrier . 1 if exposed
G

O if non-carrier O if unexposed
Risk of disease

Pee = by + by G + b, E + by, GE

Log odds of disease

P
log 1_3; =By + Py G+ B E + By GE

Test for “additive interaction:” H is b,,=0

Test for “(multiplicative) interaction:” Hy Is f3,,=0
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(a) Removable interaction (b) Nonremovable pure (c) Nonremovable
interaction crossover interaction

Trait value

Unexposed Exposed Unexposed Exposed Unexposed Exposed

. Environmental conditions
Black = non-carriers

(Gray = carriers

Figure 9.2 Three qualitative patterns of gene—environment interaction. The y-axis rep-
resents a trait value (e.g., mean height, disease prevalence, expected survival); the x-axis
represents two environmental conditions; the black bars denote noncarriers and the gray
bars represent carriers. (a) gives an example of a removable interaction. (b) and (c) are non-
removable interactions (“pure” and “crossover” interactions, respectively).

Kraft and Hunter (2010)



Log-transformed trait

Continuous Y

raw trait

E

Y=aG + bE + error
fits well

E

Y=aG + bE + error
does not fit well

Gene-environment interactions can be easily created or eliminated
by changing the scale of Y. There is no universally appropriate scale.

Falconer and McKay (1996); Lynch and Walsh (1998)



Mean Trait Value

Two “reaction norms” (i.e. gene-environment interaction patterns)
after Lewontin (1974) Am J Hum Genet

b)

Mean Trait Value

E E

Genetic effect, environmental effect, and gene-environment
interaction all depend on what part of the E distribution you’ve
sampled: this has implications for discovery and replication

Kraft and Hunter (2010)



Nota Bene!

Response to exposure is not the same as gene-environment
interaction as typically defined.

In this setting, the phenotype is missing in unexposed
individuals.

For example: change in mammographic density in response to
tamoxifen, nicotine and alcohol addiction, post-traumatic stress
disorder, etc.

This has implications for selection of controls: if exposure is
uncommon, but proportion of responders among exposed is
high, unexposed “controls” may be inefficient.

Gene-dose interactions among exposed are more akin to gene-
environment interactions as typically defined.



Recap

* Biological, public health, and statistical
interactions are distinct concepts

* Changes in scale can create or remove
statistical interactions

* The appropriate choice of scale depend on the
problem at hand



Outline

* Leveraging GxE Interactions to Discover Risk Markers



The appropriate choice of test depends on the problem
at hand.

The problem at hand in genome-wide association
studies is often to find markers that are associated with
phenotype in any exposure stratum.

Classical tests for statistical interaction are not testing
the appropriate null hypothesis.

But we can leverage the presence of statistical
Interaction to increase power relative to the marginal
test of gene-environment interaction.



* If the genetic effect is restricted to the exposed
subgroup, then the marginal test (which averages
over exposure) may lose power

Exposure Frequency: 10%

25

20

15

exposed

mean trait

1.0

full sample

Marginal effect
unexposed

| | | | |
0.0 0.5 1.0 1.5 2.0

05

0o

copies of risk allele



* If the genetic effect is restricted to the exposed
subgroup, then the marginal test (which averages
over exposure) may lose power

Exposure Frequency: 10%

25

20

15

exposed
— Effect in exposed

mean trait

1.0

full sample

05

unexposed } Effect in unexposed

| | | | |
0.0 0.5 1.0 1.5 2.0

copies of risk allele



Simple example

1 if carrier . 1 if exposed
G
O if non-carrier O if unexposed
Risk of disease

Pee = by + by G + b, E + by, GE

Log odds of disease

P
log 1_3; =By + Py G+ B E + By GE

These tests throw
away information on

Test for “(multiplicative) interaction:” H is =0 effect of G among
unexposed

Test for “additive interaction:” H is b =0



Testing for association allowing for interaction

+ Is this marker associated with risk of disease in any
exposure subgroup?

Compare two models

Pce _
Null log 1pGE Bo+ B E

Alternative  log 1p§E =Bo+ B E+ By G+ Py GE

Can also ask: Is this exposure associated with risk of disease
among individuals with any genotype?

36 Kraft et al. (2006) Hum Hered; Marchini et al. (2004) Nat Genet; Evans et al (2006) PLoS Genet
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ORge

2.0
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1.6
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0.8

0.6
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The usual gene-
environment
interaction test
(departures from
additivity on log-odds
scale)
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Novel genetic associations discovered using the
joint test

Parkinson’s and coffee intake

Hamza TH, et al. (2011). PLoS Genet 7(8): €1002237

2,400 cases, 2,500 controls

Fasting glucose and BMI
Manning AK, et al. (2012) Nat Genet

83,000 subjects

COBLL1-GRB14 (rs7607980)

20 1 & P=420x107 |

o
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a

L L
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o
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SLC38A711
T T T
165,100 165,300 165,500

Chromosome 2 position (kb)

BMI <28 BMI =28

Type 2 Diabetes and Gender
Morris AP, et al. (2012) Nat Genet
35,000 cases and 114,000 controls

Type 2 Diabetes and BMI
Perry JRB, et al. (2012) PLoS Genet
16,000 cases and 75,000 controls

Esophogeal cancer and alcohol
Wu C, et al. (2012) Nat Genet
10,000 cases and 10,000 controls

Lung function and smoking
Hancock, et al. (2012) Nat Genet
50,000 subjects
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Leveraging GXE Interactions to
Discover Risk Markers

Joint test (binary or continuous outcomes)
“Case-only” test (binary outcomes)
Hedge methods (binary outcomes)

Genotype-dependent variance methods
(continuous outcomes)



We can also squeeze more information out of
our data by assuming the tested genetic
marker and the environmental exposure are
iIndependently distributed in the general
population.




2x2x2 Representation of Unmatched Case-Control Study
Examined by Standard Test for GXE Interaction

Gene
G=1 G=0
Environment D=1 D=0 | D=1 D=0
E=1 a b e f
E=0 C d g h
OR (D-E) ad/cb eh / gf
OR (GXE) adfg / bceh

OR(GXE) = OR(G-E|D=1)/OR(G-E|D=0).

Assuming OR(G-E|D-0)=1 greatly reduces the variability in OR(GXE).
The case-only estimate of OR(GXE) is ag/ce.

Piegorsch (1994)



The gain in power comes from the assumption of G-E
independence, not the fact that only cases are used.

It is possible to build this assumption into the analysis
of case-control data. These approaches retain the
efficiency of the case-only test, but also allow for

estimation of main effects of G and E, and
estimates/tests of interaction effects other than
departure from a multiplicative odds model.

Umbach and Weinberg (1994) Stat Med; Chatterjee and Carroll (2005) Biometrika;
Han et al. (2012) Am J Epidemiol; Dai et al. (2012) Am J Epidemiol



The price for the increased power for the case-only test
is increased Type | error rate if OR(G-E|D=0)#1, i.e. if G
and E are associated in controls.

How could this happen?
1. Population stratification
2. “E” is an intermediate on the G=>D pathway

How likely is this?

1. Population stratification could affect many markers, but can
also be controlled at design and analysis stage

2. A small number of markers out of the many many markers
tested in a GWAS will affect E, and those may be known.

Bhattacharjee (2010) Am J Hum Genet; Cornelis (2011) Am J Epidemiol
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Leveraging GXE Interactions to
Discover Risk Markers

Joint test (binary or continuous outcomes)
“Case-only” test (binary outcomes)
Hedge methods (binary outcomes)

Genotype-dependent variance methods
(continuous outcomes)



Hedge Methods
Can we have our cake and eat it too?

 Empirical Bayes methods

— Averages the standard logistic regression and case-only
estimates of the interaction effect, weighted by evidence
for/against G-E independence

 Two-step approaches

— Screening step followed by testing step

— Screening step may leverage G-E independence

— Testing step robust to departures from G-E independence

— Screening and test step chosen to be independent

Mukherjee et al. (2008) Genet Epidemiol; Murcray et al. (2009) Am J Epidemiol; Murcray et al.
(2011) Genet Epidemiol; Hsu et al. (2012) Genet Epidemiol; Wu et al. (2013) Genet Epidemiol
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Leveraging GXE Interactions to
Discover Risk Markers

Joint test (binary or continuous outcomes)
“Case-only” test (binary outcomes)
Hedge methods (binary outcomes)

Genotype-dependent variance methods
(continuous outcomes)



These tests are based on shifts in the mean

trait values across GxE categories. What if

we look at general differences in distribution
across genotype?

This allows us to scan for loci involved in GXE
and GxG interactions without knowing or

measuring the relevant E.

H. Aschard
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Method: Principles

For guantitative phenotypes, the distribution of phenotypic

values by genotypic classes will be different in the presence of
main effect only or interaction effect

" Non-carrier Main effect only

Carrier

0.2

0.1

0.0
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Method: Principles

For guantitative phenotypes, the distribution of phenotypic
values by genotypic classes will be different in the presence of
main effect only or interaction effect

~ Non-carrier Interaction effect only
|
Carrier
unexposed
exposed to

\. (unknown) E

0.2
|

0.1

0.0

-
.
.




Method: Principles

For guantitative phenotypes, the distribution of phenotypic
values by genotypic classes will be different in the presence of
main effect only or interaction effect

~ Non-carrier Interaction effect in opposite direction

Carrier

0.2

5- exposed to exposed to
(unknown) E1 (unknown) E2
[Pare et al. 2010] .3 I2 |1 cl) ; ; ;

[Struchalin et al. 2010]
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Method: Principles

LETTER

doi:10.1038/nature11401

FTO genotype is associated with phenotypic
variability of body mass index

A list of authors and their affiliations appears at the end of the paper.

There is evidence across several species for genetic control of
phenotypic variation of complex traits'™, such that the variance
among phenotypes is genotype dependent. Understanding genetic
control of variability is important in evolutionary biology, agricul-
tural selection programmes and human medicine, yet for complex
traits, no individual genetic variants associated with variance, as
opposed to the mean, have been identified. Here we perform a

environmental sensitivity so that genotypes differ in phenotypic vari-
ance. Therefore, even if the environments, internal or external, are not
directly measured, evidence for genetic control of variation can be
quantified through an analysis of variability.

There is empirical evidence for genetic control of phenotypic vari-
ation in several spedies', induding Drosophila*, snails'!, maize'* and
chickens®, and specific quantitative trait loci with an effect on variance

Copyright © 2011 by the Genetics Society of America
DOL: 10.1534 /genetics.111.127068

Detecting Major Genetic Loci Controlling Phenotypic Variability
in Experimental Crosses

Lars Ronnegard*' and William Valdar®

“Statistics Unit, Dalarna University, SE-781 70 Borlinge, Sweden and tDepartment of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, Nowth Carolina 27599-7265

Manuscript received January 20, 2011
Accepted for publication March 21, 2011
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Inheritance Beyond Plain Heritability: Variance-
Controlling Genes in Arabidopsis thaliana

Xia Shen', Mats Pettersson®, Lars Ronnegard®?, Orjan Carlborg'>*

1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden, 2 Statistics Unit, School of Technology and Business Studies, Dalama University,
Borlsnge, Sweden, 3Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden

Abstract

The phenotypic effect of a gene is normally described by the mean-difference between altemative genotypes. A gene may,
however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a
publicly available Arabidopsis thaliana dataset [1] and show that geneuc variance heterogeneity appears to be as common
as normal additive effects on a ide scale. The study also develops theory to estii the ib of
differences b gt ypes to the p ypic variance, and this is used to show that individual loci can explain more
than 20% of the phenotypic variance. Two well—sludled systems, cellular control of molybd level by the i

MOTI and ﬁowenng-ume regulauon by the FRI-FLC expression network, and a novel assocuauon for Leaf serration are used
to ill the ¢ ion of major individual lodi, exp p ys, and gene-by-envi interactions to the
genetic variance heterogeneity.

PLOS

OPEN 8 ACCESS Freely available online

Genomic Analysis of QTLs and Genes Altering Natural
Variation in Stochastic Noise

%, Jason A. Corwin?®, Bindu Joseph?”, Julin N. Maloof’, Daniel J. Kliebenstein*

1Department of Plant Biology, University of California Davis, Davis, California, United States of America, 2 Department of Plant Sciences, University of California Davis,
Davis, California, United States of America

Jose M. Jimenez-Gomez'

Paré et al. (2010) PLoS Genet
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Method: Testing for association

Sum of differences of quantiles
across multiple points

Si1o12 = 2im1(qi1 — q12)°
N\

T = S11012 T S12022 T S11622

Significance of T derived by
permutation

count (Tobs <Tperm )

-val =
P N permutation +1

{

Yo

o—o0 Non-carrier = genotype 11

O—O0 Carrier

0:,(30%)

= genotype 12

0.0

0.2

I I I I
0.4 0.6 0.8 1.0
Pr(Y)

Aschard et al. (2013) Genet Epidemiol



(Partial) List of Important Topics | Do Not Have
Time to Discuss

Biased testing due to mis-modeling main effects (& fixes)
Meta-analysis

Impact of measurement error

Confounders—when and how to adjust

Study design (prospective, retrospective, oversampling)

Considerations when characterization (clinically relevant
interactions, biological interactions) rather than discovery is
the goal

See Appendix...



Outline

e State of the science: cancer and obesity



Of the 407 articles, 307 articles reported a
significant gene-environment interaction.

Are these credible?



Of the 407 articles, 307 articles reported a
significant gene-environment interaction.

Are these credible?

Probably not.

1. Small sample sizes.
2. No correction for multiple testing/low priors.
3. Little in the way of replication.



What about large studies examining
interactions between GWAS-identified markers
and established risk factors?
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Interactions Between Genetic Variants and Breast Cancer Risk
Factors in the Breast and Prostate Cancer Cohort Consortium

Danizle Campa, Audolf Kasks, Loic Le Marchand, Christopher &. Haiman, Futh C. Travis, Chiistine D. Barg, Julie E. Buring,
Stephen J. Chanock, W. Ryan Diver, Lucie Dostal, Agnes Fournier, Susan E. Hankinson, Brian E. Henderson, Fabert M. Hoover,
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Michaal L Thun, Dimitrias Trichopoulos, Shumin Zhang, Regina G. Ziegler, Dawd J. Hurter, Sara Lindstram, Federico Canzian

Travis et al.
Milne et al.
Campa et al.

Lancet (2010)

Br Can Res (2010)

JNCI (2011)
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Replicated, Credible Interactions™

Breast Bupkes -
Prostate Nichts -
Colon It’'s Complicated -
Bladder NAT2 and smoking 1.29
Esophogeal ALDHZ2 and drinking 1.31
Lung CHRNA3/5 and smoking 1.21

*Departures from a multiplicative odds model
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Fig. 1. Relationship between sample sizes of studies of gene x lifestyle interactions in obesity (n = 210 studies)
published since 1995 and power to detect the interaction effect reported by Andreasen et al. [59] for FTO

(rs9960939) x physical activity on BMI (dashed curve).

Ahmad et al. (2013) Hum Hered
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Outline

Definition and Notation

Leveraging GXE Interactions to Discover Risk Markers
State of the science: cancer and obesity

Practicalities



Practicalities (among many)

 Sample size
* Harmonization
* Range of exposure



Exposure Prevalence : 33%

Power
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Fig. 2. Power of a case-control study to detect a gene-environment
interaction (departure from a multiplicative odds model) when the
binary exposure is measured perfectly or via a good proxy with
77% specificity and 99% sensitivity (roughly analogous to self-
reported versus measured overweight status). This figure illus-

trates several points: (a) large sample sizes are needed to detect
gene-environment interactions; (b) even modest misclassification
can greatly decrease the power of tests for gene-environment
interaction (and the relative decrease is greater for rare exposures);
vet (c) a large study using the proxy can have greater power than a
smaller study using the perfect measure. This last point is
important when the perfect measure is prohibitively expensive or
only available on a small fraction of samples, while the good
measure is relatively inexpensive or already available on many
samples. Power calculations were performed using the methods
described in Lindstrém et al. [2009], assuming a rare disease
(prevalence 11in 1,000), no main effect for the binary genetic factor
(with 20% prevalence), an odds ratio of 1.5 for the exposure, an
interaction odds ratio of 1.35, and a Type I error rate of 5 x 10 8,




Slide courtesy of L Mechanic

FTO, Physical Activity and BMI

Kilpelainen et al. (2011). PLoS Medicine. 8(11). e1001116
= Meta-analysis of 218,166 European-ancestry subjects
= Risk of Obesity (BMI = 30 vs. BMI < 25 kg/m?) for FTO rs9939609

____OR(e5%C)

Inactive 1.30 (1.24-1.36)
Active 1.22 (1.19-1.25)

Rs9939609 x Physical 0.92 (0.88-0.97)
activity interaction

P-value = 0.0010



Slides courtesy of N Chatterjee

India health study
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Participant characteristics by region

Characteristic New Delhi Trivandrum
Total (n=1,313) n=619 n=694
Age, years (mean, SD) 47.4+10.0 48.8+9.2
Household monthly income, %
<5,000 rupees 7.1 71.9
>10,000 rupees 76.7 3.1
Household items, %
Car 25 7
Refrigerator 87 58
Washing machine 79 14
Total physical activity, MET-hr/wk 42.5+43.8 147.3+85.2
Vigorous physical activity, MET-hr/wk 0.6 £+ 6.8 26.2+51.4
Sitting, hr/day 104+ 2.0 5.0+£2.3

Centrally obese, % 82.1 60.2
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Association of FTO rs3751812 with waist circumference

Effect size per T allele

Interaction

Characteristic (95% Cl) P rend by PA
erall +1.61 cm (0.67,2.55)  0.0008  0.009
New Delhi
Overall 578 +2.53 cm (1.08, 3.97) 0.0006  0.59
By PA
<91 MET-hrs/wk 517 +2.36 cm (0.82, 3.89) 0.003
92-151 MET-hrs/wk 32 +6.39 cm (1.94, 10.85) 0.005
152-217 MET-hrs/wk 24 -0.95 cm (-7.33, 5.42) 0.77
218+ MET-hrs/wk 5 N/A N/A
Trivandrum
Overall 574 0.16 0.004
By PA
<91 MET-hrs/wk 170 +3.50 cm (0.90, 6.10) 0.008
Moore et al

92-151 MET-hrs/wk 132
152-217 MET-hrs/wk 141
218+ MET-hrs/wk 131

+1.13 cm (-1.08, 3.33)  0.32
+1.04 cm (-1.63,3.70)  0.45
-2.32cm (-4.82,0.18)  0.07

(2011), Obesity




The flipside: can increase power to detect
Interaction by increasing the range of genetic
exposure measured and tested

Most work has focused on pairwise interactions. Considering
aggregate evidence for interaction may be useful.

Lindstrom et al. (CEBP 2012) find evidence that effect of a prostate-cancer SNP score
differs by age; Qi et al. (NEJM 2012) show the effect of a BMI SNP score differs by
intake of sugar-sweetened beverages.

But these approaches assume you have a defined set of SNPs with common biological
effect and known allelic effects (i.e. you know which allele is likely deleterious).



Recap



Why study genes and environment?

* Leverage assumed effect modifiers to increase power
* Provide insights into biological mechanism

* Improve risk prediction and prognostic models and
strategies for risk prediction

Statistical interaction per se generally offers at most
circumstantial evidence to address any of these goals

Kraft and Hunter (2010); Garcia-Closas et al. (2010)



Challenges

* The study of gene-environment interaction arguably
combines the toughest aspects of both
environmental and genetic epidemiology

— From genetic epidemiology: problems associated with
high-dimensional data with sparse and small effects

— From environmental epidemiology: problems associated
with measurement error, range and timing of exposure

 And sample sizes needed to reliably detect gene-
environment interaction are typically quite large



Appendix



Observed [—logF)

Misspecification of the main effect of E can
lead to inflated Type 1 error rate

Modellng E

Logistic regression

with linear term for E

Three fixes: assume a
flexible non-linear
model for E main

effect; use a
“sandwich” variance
estimator; categorize E

Expected [—logF)

&

Cornelis (2012); Tchetgen Tchetgen and Kraft(2011)



Methods for Meta-Analysis



Methods Meta-analysis of a single parameter

Main effect of SNP1
—> [fervarei] )

[ can be estimated using
an inverse variance
weighted sum

)

2

o

1
va

rG.i /

> The weighted sum is
following a 1df chiz
under the null hypothesis



Methods Meta-analysis of a multiple parameters
Main effect Int. effect of

B =(f;, Pse) can be
Unexposed of SNP1  SNP1andE estimated by MLE where
= [ fs1,varc1] [ﬂGE1,VaI'GE1]\ I() is equal to:

> 1Y (p-6.) = (-5)

> Test for association
using a Score test or
Wald test

Unexposed

= [ foz,varcz] [[foez,varcez]

Unexposed

= [ ffc3,varcs] [ﬂGE3,VaI'GE3]/

E

[Aschard et al. Hum Hered]
[Manning et al. Genet Epidemiol]

B Unexposed subject [] Exposed subject



Methods Meta-analysis of a multiple parameters
Main effect Int. effect of

of SNP1  SNP1andE B =(fig, figz) can be
Unexposed estimated by summing
= [ fs1,varc1] [ﬂ’G1,VaI'GE1]\ effect on strata

[
=> [ o2, "GE2,VarGE @ | A
| foz,varez] [’ cez,varcez] (Z Vaf'e.ij + [Z varG_i]
1 1
y 2

é[ﬂG%VarGﬂ [ﬂ’GE3,VaI'GE3]/ \_ Val, ) U valg ; p

Unexposed

Unexposed

E

> The sum is following
a 2df chi2 under the
null hypothesis

B Unexposed subject [] Exposed subject



ResultS power to detect G2 function of sample size

Power of the three tests for G2

For a single realization of Y, we 000
compute the power of the 3 0.900
tests while increasing sample 0.800
size 0.700
0.600
1145 + g 0o
& 0.400
0.300
@ 3110 + 0.200
0.100
0.000 B
2285 + Marginal G2 Joint G2-E Marginal G2-E interaction
@ 1311 + > Regardless of the test used, large
sample will be needed to reliably detect
@ 2310 = 10,161 genes with subtle gene-environment

interaction patterns.



Testing for Additive Interaction in
Case-Control Data

When to report additive or
multiplicative interaction



Testing for departures from additivity
on the absolute risk scale when you
have case-control data



Relative Excess Risk due to Interaction

 We can use a clever trick to test for non-additivity
— 111 = (log7loo) - (I16-1g0) = lgo= 0 = RR{;=RR;5 + RRy; — 1
— RERI = RRy;- RRy - RRy, + 1

* This is no longer a generalized linear model

— Can’t fit using standard logistic regression software, e.g.
— Have to use custom code (e.g. PROC NLMIXED)



Likelihood Ratio Test

proc nlmixed data=twosnp;
if (g eq 0) and (e eq 0) then eta=a;
if (g eq 0) and (e eq 1) then eta=a+b2;
if (g eq 1) and (e eq 0) then eta=a+bi;
if (g eq 1) and (e eq 1) then eta=a+log(exp(b1)+exp(b2)-1);
11 = caco*eta + (1-caco)*log(1+exp(eta));
model caco ~ general(ll);

parms a b1 b2=0; Null Model
run; (interaction constrained to be additive on risk scale)

proc nlmixed data=twosnp;
if (g eq 0) and (e eq 0) then eta=a;
if (g eq 0) and (e eq 1) then eta=a+b2;
if (g eq 1) and (e eq 0) then eta=a+b1;
if (g eq 1) and (e eq 1) then eta=a+b3;
11 = caco*eta + (1-caco)*log(1+exp(eta));
model caco ~ general(ll);

parms a b1 b2=0; Alternative Model
run; (interaction not constrained)

Compare -2 log L, +2 log L, to chi-square 1 d.f.



Testing for additive interactions using case-control data is less straightforward. Under the null hypothesis of
additivity on the absolute scale, RRg162 = RRg1 + RRg: -1, where RRgi6;: IS the relative risk for a woman with
genotype G; at locus 1 and G; at locus 2, and RRg1 (RRg;) is the marginal relative risk for genotype G, (G,).
Thus testing whether the Relative Excess Risk due to Interaction (RERI) = RRgi1g2 — (RRg1 + RRg2-1) =0 is
equivalent to testing for additive interaction.'®'°” Testing RERI=0 can be done by fitting the alternative model
[E2] and constructing an appropriate point estimate and confidence interval for RERI using the fitted odds
ratios ORgi62 = exp[Bse1 G1+ Ps2 G2 + PBeisz G1 G2] etc., or by comparing [E2] to the constrained, non-linear
logistic model

log odds of breast cancer (given G,=0) = a + Bx'X + Be1 G1 [E4.a]
log odds of breast cancer (given G;=0) = a + Bx'X + Bs2 G> [E4.D]
log odds of breast cancer (G;#0, G,#0) = a + Bx' X + log [exp(Bc1 G1)+ exp(Bs2 G>) -1]. [E4.c]

(This is equivalent to the linear odds model described in Richardson and Kaufman'®” and can be fit using
nonlinear function maximizers in standard software packages, e.g. PROC NLMIXED in SAS or the nim()
function in R.) There are two potential drawbacks to using the RERI approach to testing for additive interaction
in this context. First, we will rely on the odds ratio approximation to the relative risk.**® Considering breast
cancer is a relatively rare disease and the individual allelic relative risks are small, the odds ratio should be a
good approximation to the relative risk. Second, if Bx # O the RERI varies across strata defined by the
covariates X; so the estimated RERI derived by the procedures described above does not necessarily estimate
the RERI in any particular stratum, rather it represents an average RERI.'® (Tests for the null that RERI=0 for
all strata have appropriate Type | error, however.)

105. Greenland S, Rothman K. Concepts of interaction. In: Rothman K, Greenland S, eds. Modern
Epidemiology. Philadelphia: Lippincott Williams & Wilkins, 1998.

106. Greenland S. Interactions in epidemiology: relevance, identification, and estimation. Epidemiology
2009;20(1):14-7.

107. Richardson DB, Kaufman JS. Estimation of the relative excess risk due to interaction and associated
confidence bounds. Am J Epidemiol 2009;169(6):756-60.

108. Kalilani L, Atashili J. Measuring additive interaction using odds ratios. Epidemiol Perspect Innov
2006;3:5.

109. Skrondal A. Interaction as departure from additivity in case-control studies: a cautionary note. Am J
Epidemiol 2003;158(3):251-8.



Recommendations for presenting analyses of
effect modification and interaction

Mirjam J Knol'* and Tyler J VanderWeele*? Int J Epidemiol (2012)

e Present effect measures for each GxE category
e Present tests for both additive and multiplicative int.



Impact of departures from gene-
enviroment independence on
“case-only” style tests in the
context of GWAS



The price for the increased power for the case-only test
is increased Type | error rate if OR(G-E|D=0)#1, i.e. if G
and E are associated in controls.

How could this happen?
1. Population stratification
2. “E” is an intermediate on the G=>D pathway

How likely is this?

1. Population stratification could affect many markers, but can
also be controlled at design and analysis stage

2. A small number of markers out of the many many markers
tested in a GWAS will affect E, and those may be known.

Bhattacharjee (2010)



Genome-wide Type | error rate for case-only test
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Three Reasonably Up-to-date
Overviews of Statistical Methods
for GXE Interactions for Binary

Outcomes—

And an Interesting Observation about
What Can Happen when G-E Correlation
and G-E Interactions Go in Opposite
Directions



Testing Gene-Environment Interaction in Large Scale
Case-Control Association Studies: Possible Choices
and Comparisons

Mukherjee B, Ahn J, Gruber SB, Chaterjee N.

Am J Epidemiol (2012)

Gene-environment interactions in genome-wide
association studies: A comparative study of tests
applied to empirical studies of type 2 diabetes
Cornelis MC, Tchetgen Tchetgen E, Liang L, Chatterjee
N, Hu FB, Kraft P

Am J Epidemiol (2012)

GE-Whiz! Ratcheting Gene-Environment Studies up
to the Whole Genome and the Whole Exposome.
Thomas DC, Lewinger JP, Murcray CE, Gauderman WJ
Am J Epidemiol (2012)
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Power for 8 different approaches
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Example: ESCC, ALDH2 and Alcohol Intake
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Example: ESCC, ALDH2 and Alcohol Intake

GE_Manhattan Plot
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-log 0(F)

Example: ESCC, ALDH2 and Alcohol Intake
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Example: ESCC, ALDH2 and Alcohol Intake

The risk allele is associated with a
decreased risk of heavy drinking in the
general population, and an increase in the
effect of alcohol on ESCC risk

_ |OR  |ORpe

rs670 (ALDH*2) 0.23 2.69

97 Wu (in press) Genet Epidemiol



Table 3. Genome-wide significance of tests for gene-environment interaction for rs11066015
(12924) and rs3805322 (4q23)

Genome-wide Significant?
ALDH?  (0=5x10°)  ApH

rs11066015° rs3805322"
Standard case-control test Yes no
Case-only test No Yes
Empirical Bayes test Yes no
Hybrid two-step approach Yes no
Cocktail 1 Yes Yes
Cocktail 2 Yes Yes

® Empirical Bayes estimate of ORgx=3.66 (2.79,4.80); for the screening stage of the hybrid test, both G-E
association and marginal G-D tests were significant with pa=6.0x10<a, and py=7.3%10°<q,,, and the standard

screen—

test of GXE interaction at the second stage was quite significant (p<107%); for the cocktail methods, p**"=py for
screen—

cocktail 1 and p™™"=pa for cocktail 2, both of these pass the first stage threshold, and the second stage tests (the
Empirical Bayes test for Cocktail 1 and standard case-control test for Cocktail 2) are both very significant (p<10
16

).

® Empirical Bayes estimate of ORg.=1.70 (1.36,2.20), p=5.4x10"; for the screening stage of the hybrid test, both

G-E association and marginal G-D tests were significant with pA:1.1><10'9<aA and pM:9.3x10'13<aM, however, the

standard test of GXE interaction at the second stage did not meet the second stage threshold (=4.2x10™): for the
screen—

cocktail methods, p™"=py for cocktail 1 and 2, which passes the first stage threshold, and the second stage test
(the Empirical Bayes test for both) meets the second stage threshold (=4.2x10™).

Wu (in press) Genet Epidemiol



When “no interaction” is the more
interesting result!



“No (supra- or sub-) multiplicative interaction”
can still have dramatic consequences.

m = 0.1 and R = 1.2 (without A)

0.4 -
-0.15
0.3 -
. >
% -7 F0.10 3
5"-:’ 0.2 - 2
re
(.= — Multiplicati =
0.1 S model  0.05 &
i .- Additi
e m:::rdlelre
0.0 - - 0.00

0 5 10 15 20
Risk genotypes

100 Moonesinghe (2011) Eur J Hum Genet
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Benefit of smoking (=reduction in 30 year cumulative cancer

Figure 1. Cumulative 30-year
absoluterisk for bladder cancerina
50-year-old male in the United
States, overall and by quartiles of a
polygenetic genetic score.

risk) much greater among those in highest quartile of genetic

burden versus lowest (8.2 vs 2.0). Clearly interesting,

although the test for multiplicative interaction between genetic

risk score and smoking was non-significant.

Garcia-Closas et al. (2013) Cancer Res



50 yrs

Estimated incidence rate per 100,000 femal_es, age

Additive
—*= Fitted Risk

Multiplicative

Observed risk of breast cancer (green)
versus expected under multiplicative
(blue) or additive models (red)

EEEREAA

Challenge: the uncertainty of the risk estimates is greatest in the tails,
which is where we are most likely to identify individuals who would
benefit from genetic information

Court of risk alleles '

Joshi A, et al. (under review) Am J Epidemiol



Limits on etiologic inference

w=a+b,6+b E+b, GE

p=a+b,6+b.E

log(p)=a+ bg G+b,E+ b92 GE

logy=a+by6+b. E

log(/(1-w)=a+b, 6 + b, E + by, GE

I(GED)-[I(6:D)+I(ED)]

103 Siemiatycki and Thomas (1991); Thompson (1991); Greenland (2009); Vanderweele (2010)



Sorting out true from false
positives, balancing against false
negatives

Maintain epistemological modesty. l.e. don’t place too
much faith in specific priors—never mind unfalsifiable
hypotheses or post-hoc explanations



Interaction Between the Serotonin

Transporter Gene (5-HTTLPR),

Stressful Life Events, and Risk of Depression
A Meta-analysis

hf"' Risch, Phi) Results In the meta-analysis of published data, the number of stressful life events
Richard Herrell, PhIY was significantly associated with depression (OR, 1.41; 95% Cl,1.25-1.57). No asso-
Thomas Lehner, PhD ciation was found between 5-HTTLPR genotype and depression in any of the indi-
Kung-Yee Liang, PhD vidual studies nor in the weighted average (OR, 1.05; 95% Cl, 0.98-1.13) and no in-

teraction effect between genotype and stressful life events on depression was observed
(OR, 1.01;95% Cl, 0.94-1.10). Comparable results were found in the sex-specific meta-
analysis of individual-level data.

Lindon Faves, Phl)
Josephine Hoh, PhD

Andrea Griem, BS
Maria Kovars. PRI Conclusion This meta-analysis yielded no evidence that the serotonin transporter

Jure Ot PhD genotype alone or in interaction with stressful life events is associated with an el-
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Lessons learned from the study of marginal
genetic effects

 Candidate genes have typically not been associated
with relevant traits (priors are still low)

 “Moving the goalposts” can generate confusion and
divert resources from more promising avenues

* Now strong statistical evidence for association and
precise replication are required up front

* Priors for particular gene-environment interactions
will be even smaller

* The ability and temptation to “move the goalposts”
will be higher for gene-environment interactions



