PGC Worldwide Lab Call Details

Friday, November 8, 2013

PRESENTERS:
Nancy J. Cox, Ph.D. and Abe Palmer, Ph.D.

Depts. of Medicine and Human Genetics

The University of Chicago

TITLE: REVERSING GENETICS: (AGAIN)

[110:00 EST - US East Coast
[109:00am CST

[ 03:00pm GMT

[104:00pm CET

[ 02:00am AED Saturday, November 9

PASSCODE: 275 694 38 and TELEPHONE:

- US Toll free: 1 866 515 2912

- International Direct: +1 617 399 5126

- Global Access Numbers: There may be a toll-free number from your country. See
http://www.btconferencing.com/globalaccess/?bid=75_public

[ Operators will be on standby to assist with technical issues. “*0” will get you assistance.
[ The conference line can handle up to 300 participants.



LINES ARE MUTED NOW

- Lines have been automatically muted by operators as it is possible
for just one person to ruin the call for everyone due to

background noise, electronic feedback, crying children, wind,

typing, etc.

- Operators announce callers one at a time during
guestion and answer sessions.

- Dial *1 if you would like to ask a question of the
presenter. Presenter will respond to calls as time allows.

- Dial *0 if you need operator assistance at any time
during the duration of the call.



UPCOMING PGC WORLDWIDE LAB

Friday, December 13, 2013

PRESENTER:
Professor John McGrath, AM, MBBS, MD, PhD, FRANZCP
Queensland Brain Institute
The University of Queensland
Queensland, Australia

TITLE:
Where GWAS and epidemiology meet: opportunities for the simultaneous study
of genetic and environmental risk factors in schizophrenia.



Reversing Genetics

(Again)

Nancy J. Cox, Ph.D. and Abe Palmer, Ph.D.
Depts. of Medicine and Human Genetics

The University of Chicago
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In the Olden Days ...

* Geneticists reasoned from
biochemistry and observations on
metabolites to deduce the cause of
Mendelian diseases

* Worked for a discrete set of
diseases

» Systematic and agnostic process-
based investigations were first
called “reverse” genetics



Linkage, Positional Cloning,
GWAS (by typing or sequencing)

 Have brought us near-complete
identification of Mendelian disease
genes (and promise the rest)

* Have enabled unprecedented
discovery for common, complex
disease

* No one Is satisfied with what we
have actually learned from these
discoveries



What We Have Learned

« Common variants associated with
common disease and complex
traits are largely regulatory

* May collectively account for substantial
heritability

* Give us little biological insight until we
discover driving genes

» Rare variant discoveries give us
major biological insight

* Perhaps disproportionate to magnitude of
contribution to common disease 8



Improving Understanding

» Can we use more about what we
already know about genome
function, biochemical (and other)
pathways, Mendelian diseases, and
potentially related phenotypes to
learn more about what we still need
to learn of complex traits?

» Starting with what we know Is
reversing genetics (again)



We Propose to Use ...

» Potentially related phenotypes
 Genome function

» Biochemical (and other) pathways
* Mendelian diseases
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We Propose to Use ...

» Potentially related phenotypes
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Acute amphetamine response Is an intermediate

phenotype

Likelihood Initial Plastic Progression
of initial responses changes in and
exposure to drugs drug response escalation

Adapted from Palmer and de Wit, 2011

 Individuals vary in acute responses to d-amphetamine
« Acute d-amphetamine response is heritable
* Probes dopaminergic system

« Originally examined for its possible role in drug abuse
suseptabiltiy
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Study design

Screening
* Limited past and current drug use
Healthy volunteers, 18-35 « High school education 398 participants

 [PHIMEN CRUGEEE » No history of psychiatric disorder

Phenotyping
Genotyping
» Placebo, 10 mg AMPH, 20 mg AMPH
381 participants : » Randomized order

(325 Caucasian) * Double-blind
* 6 time points

Harriet de Wit
13



Sample self-report scale questions

Profile of Mood States (POMS)
72 adjectives

Friendliness: “Agreeable”, “Helpful”, “Forgiving”
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Sample self-report scale questions

Drug Effects Questionnaire (DEQ)
Five questions; visual analog scale

Want More: “Would you like more of what you consumed, right now?”
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Sample self-report scale questions

Addiction Research Center Inventory (ARCI)
53 true/false questions

MBG: “l would be happy all the time if I felt as | feel now”
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Hypothesis

SNPs nominally associated with the
euphoric response to d-amphetamine will
be enriched among SNPs associated with

dopaminergic psychiatric disorde

CONTROLLED DRUG

POSSESSION WITHOUT AUTHORITY
ILLEGAL
KEEP OUT OF REACH OF CHILDREN

| | " ®
Ritalin® 10
METHYLPHENIDATE
HYDROCHLORIDE 10 mg

100 tablets

AVERAGE CLINICAL DAILY DOSE (umol/kg)

a Dopamine receptors

nwouums‘
CLOZAPINE @

THIORIDAZINE ®PIPAMPE RONE
CHLORPROMAZINE @
Ll
FLUANISONE
MOPERONE
r .93
PENFLURIDOL p- .001
CIS=-THIOTHIXENE ®
A ) slope - 1.34
TRIFLUOPERA 2INI
@ +)BUTACLAMOL
LUPHENAZINE
° R
upERigoL O
| @-FLUPENTHIX PIMOZIDE
PR LUPERI00;
PT A
soudet *BENPERDOL
7 k
A X )
k0 10 100 1000

K, OF 3H-SPIROPERIDOL BINDING IN CAUDATE (K,.nM)

Peroutka et al 1980 Am J Psychiatry

‘gi

o

HALOpERIDOL

s JECTION, USP

U Inmegiate Reled% ’
: I

;Q;':""imusculu use
Sk Vial  px onlY
pitile

MOTECT From LIGHT

I'S

-

-l \F

g

(1

YA

)

4}

NOC 63323.474-10 457410 7
H %41
/ ALOPERIDOI;, u
NJECTION, USP 5
(For Immediate Release) E;z
44!

‘9;;

ot Intramuscutar Use é;
24

10 m px onl¥ ;554

Muttiple Dose Vial



Enrichment methods

Is the overlap between the two datasets larger than you would expect by chance?
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What is the magnitude of overlap?
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Permutation generates a null distribution of

overlapping SNPs

Permuted Permuted

Permuted Permuted ph;notype phenotype
phenotype phenotype

Permuted Permuted

Permuted Permuted phenotype phenotype
phenotype phenotype

Permuted Permuted

Permuted Permuted phenotype phenotype
phenotype phenotype

1,000
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Evaluation of enrichment of schizophrenia-

assoclated SNPs
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SNPs associated with the euphoric response to d-

amphetamine are enriched among SNPs associated with
schizophrenia
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Results from the GAIN Schizophrenia enrichment analysis are

replicated in a more powerful sample
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Enrichment is driven by alleles associated with increased

euphoria and decreased schizophrenia risk
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SNPs associated with the euphoric response to d-

amphetamine are enriched among SNPs associated with

ADHD
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Enrichment is driven by alleles associated with increased

euphoria and decreased ADHD risk
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No enrichment is observed for negative

control phenotypes

Height Inflammatory Bowel Disease
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We Propose to Use ...

« Genome function

28



Classes of Functional Variants Enriched
IN SNPs Associated with Common
Disease and Complex Human Traits

eQTLs — SNPs associated with mRNA
transcript levels

MQTLs — SNPs associated with methylation
status at sites that are variably methylated
PQTLs — SNPs that are associated with
protein levels

MIRNA QTLs — SNPs associated with levels
of MIRNAS

ENCODE annotations

29



WE ACCELERATE DISCOVERY
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PGC: ADHD (all SNPs)
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MAGIC: HOMA-IR (all SNPs
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Hypertension and Adipose eQTLs
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Concentrating Heritability

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,.* S. Hong Lee,! Michael E. Goddard,?? and Peter M. Visscher!

ARTICLE

Estimating Missing Heritability for Disease
from Genome-wide Association Studies

Sang Hong Lee,! Naomi R. Wray,! Michael E. Goddard,23 and Peter M. Visscherl.*
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Table 2 Comparison of results of different polygenic methods across diseases

Caused by common GWAS SNPs
| MM-based " 0lygenic modeling and Bayesian inference

Prevalence  Family based hernitability Total variance
Disease (%) heritability® (s.e.) explained (50% Cl) N SNPs (50% CI)
Rheumatoid 1 0.53-0.68 0.32 (0.037) 0.18 (0.15-0.20) 2,231
arthritis (-0.13 MHC)® (+0.04 known non-MHC)®  (1,588-2,740)
Celiac disease 1 0.5-0.87 0.33 (0.042) 0.44 (0.40-0.47) 2,550
(-0.35 MHC)® (1,907-3,061)
MI/CAD 6 0.3-0.63 0.41 (0.067) 0.48 (0.43-0.54) 1,766
(1,215-2,125)
T2D mellitus 8 0.26-0.69 0.51 (0.065) 0.49 (0.46-0.53) 2,919
(2,335-3,442)

2Family based heritability estimates were taken from previous data for rheumatoid arthritis®’-?8, celiac disease®*°, MI/CAD?!-32
and T2D33:3*, "'We excluded some loci in certain analyses: although the family based heritability estimates are based on the
whole genome, the extended MHC region was removed from the common GWAS SNP analyses for rheumatoid arthritis and
celiac disease, and validated non-MHC loci were further removed from the polygenic modeling analysis of the rheumatoid
arthritis GWAS data. 50% Cl, 50% credible interval: s.e., standard error.

Stahl et al, Nat Gen



Type 1 Diabetes Crohns Disease

V(G)/V(P) SE V(G)/V(P) SE

adipose 0.21 0.019 0.03 0.008
heart 0.199 0.02 0.017 0.006
lung 0.192 0.018 0.02 0.007
muscle 0.188 0.018 0.028 0.008
nerve 0.191 0.018 0.025 0.008
whole

blood 0.187 0.023 0.17 0.024

Overall 0.48 0.06 0.50 0.07
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Concentration of Heritability

 Smaller numbers of eQTLs (3-30K)
account for 30-60% of heritability
estimated for all variants after QC
(150-600K)

* Observed across autoimmune and
iInflammatory diseases,
neuropsychiatric, metabolic, etc.

» Partitioning by cross vs. single
tissues, cis- and trans-, common
and rare 10



Davis et al, PL0oS Genetics

MAF Number of h2 Number of SNPs h2

>0.001-0.05 20,316

>0.1-0.2 96,398 0.11 91,661 0.08
(0.07) (0.08)
>0.2-0.3 81,924 0.12 77,641 0.01
(0.07) (0.01)
>0.3-0.4 74,393 0.16 70,193 0.11
(0.07) (0.05)
>0.4-0.5 70,911 0.07 66,770 0.11



We Propose to Use ...

* Mendelian diseases

42



Volume 155
Number 1

I I September 26, 2013
www.cell.com
G A
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A Nondegenerate Code of Deleterious Variants in
Mendelian Loci Contributes to Complex Disease Risk

Blair DR, Lyttle CS, Mortensen JM, Bearden CF, Jensen AB, Khiabanian H, Melamed
R, Rabadan R, Bernstam EV, Brunak S, Jensen L], Nicolae D, Shah NH, Grossman
RL, Cox NJ, White KP, Rzhetsky A
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Systems Approaches

* Use GTEXx and other resources to
build directional, tissue-specific,
and cross-tissue SNP reqgulators
(cis and trans, a-zQTLSs) for each
gene

 Assemble gene-sets using
knowledge from rare variant
assoclations (Mendelian, animal
models, QTs) to “probe” common
diseases and complex traits y



Examples

* What proportion of the overall
heritability to neuropsychiatric
phenotypes is attributable to the
regulation of Mendelian disease genes?

 What proportion of the overall
heritability to autism is attributable to
regulation of genes leading to

Mendelian phenotypes including autism
as part of the spectrum?

45



Examples — other BioProbes

* For diseases with large-scale meta-
analyses completed and publicly
availlable, and for biomarkers with large-
scale meta-analyses, can build direction
—specific bioprobes to test
neuropsychiatric disorders

 What is the “opposite” of diabetes?
What phenotypes might chronic,
genetically determined low blood
glucose increase risk for? Does
iInflammation increase risk of autism? |



We Propose to Use ...

» Biochemical (and other) pathways

47



Examples

« Can we translate biochemical pathways
where Mendelian traits give us clear
directionality to test how regulatory
variation that would push the pathway
In the same direction will affect risk of
human disease?

A Ribose 5P

l

PRPP
t

AIEA.R
AMPD2 :
ATP 7= ADP = AMP — IMP = GMP 7 GDP = GTP Akizu et al.

H q [J T

Ada =+ Ino Guo 48
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Pathways and More ...

* Build regulatory SNP set to assay
concentration of heritability (where
possible) and direction-specific probes
to test association with
neuropsychiatric phenotypes

« Can we build up “regulatory code” for
each disease — the list of contributory
genes prioritized by how much
regulation of that gene contributes to
heritability to disease?

49



What We Offer

* Boundless enthusiasm!

* Long-time experience working within
large consortium efforts
- We want to see the work done, but if
others have committed to doing any
of these things — great!

 Manpower and computing resources

through neuropsychiatric genetics
training grant, Conte Center, and ability

to use and offer University of Chicago
cloud computing environment 50
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Anna Pluzhnikov

Pat Evans
Anna
Tikhomirov
Keston Aquino- Lea Davis
Michaels (Bridget)

Carolyn Jumper

Anuar Konkashbaev

Eric Gamazon

Vasily Trubetskoy



”

The "nitty gritty  analysis group!
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Colleagues & Collaborators

Bob Grossman

Dan Nicolae M. Eileen Dolan

'ﬂl. ) o £ g

Chun-yu Liu
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Training in Emerging Multidisciplinary Approaches ‘S| THE UNIVERSITY OF

to Mental Health and Disease (T32MH020065) YCHICAGO
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Overview
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Disease Training Grant (T32MH020065) is funded by the NIMH and provides
specialized training to both graduate and postdoctoral students. The training
grant organizes a series of on-campus retreats as well as a journal club and
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