PGC Worldwide Lab Call Details

DATE: Friday, March 13th, 2015

PRESENTER: Gerome Breen, PhD, Senior Lecturer, Lead Translational Genomics Group, MRC SGDP Centre; Genomics and Biomarkers BioResource (Biobanking) Lead; SLaM NIHR BRC for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King's College London

TITLE: "The PGC Pathway Analysis Group: Current Findings and Future Directions."

START: We will begin promptly on the hour.

1000 EDT - US East Coast

0700 PDT - US West Coast

1400 GMT - UK

1500 CET - Central Europe

0100 Sat March 14th AEDT – Australia

DURATION: 1 hour

TELEPHONE:

- US Toll free: 1 877 703.6109
- International direct: +1 617 399.5126
- Toll-free number? See http://www.btconferencing.com/globalaccess/?bid=288_attended
- Operators will be on standby to assist with technical issues. "*0" will get you assistance.
- This conference line can handle up to 300 participants.

PASSCODE: 188 641 29

Lines are Muted **NOW**

Lines have been automatically muted by operators as it is possible for just one person to ruin the call for everyone due to background noise, electronic feedback, crying children, wind, typing, etc.

Operators announce callers one at a time during question and answer sessions.

Dial *1 if you would like to ask a question of the presenter. Presenter will respond to calls as time allows.

Dial *0 if you need operator assistance at any time during the duration of the call.

UPCOMING PGC Worldwide Lab

DATE: Friday, April 10th, 2015

PRESENTER: Kevin Eggan, PhD, Professor in the Department of Stem Cell and Regenerative Biology, Harvard University.

- TITLE: To Be Announced
- **START:** We will begin promptly on the hour.

1000 EDT - US East Coast 0700 PST - US West Coast 1500 BST - UK 1600 CEST - Central Europe Midnight AEST – Australia (Fri., April 10th to 0100 Sat., April 11th, 2015)

DURATION: 1 hour

TELEPHONE:

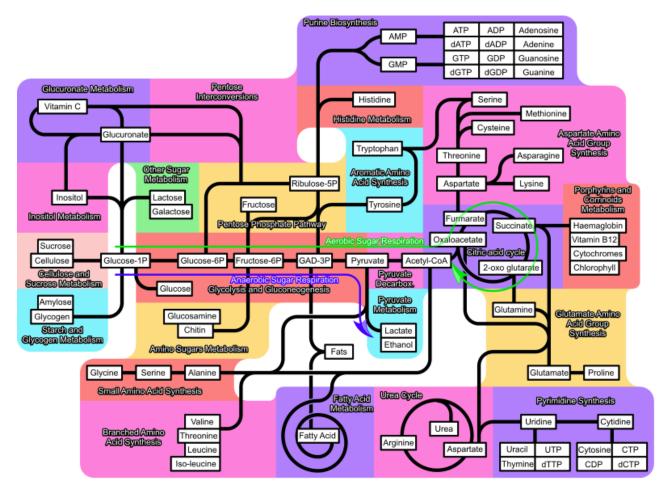
- US Toll free: 1 877 703.6109
- International direct: +1 617 399.5126
- Toll-free number? See http://www.btconferencing.com/globalaccess/?bid=288_attended
- Operators will be on standby to assist with technical issues. "*0" will get you assistance.
- This conference line can handle up to 300 participants.

PASSCODE: 188 641 29

The PGC Pathway Analysis Group: Current Findings and Future Directions.

Gerome Breen PhD.

NIHR BRC for Mental Health and MRC SGDP Centre Institute of Psychiatry King's College London


on behalf of the Psychiatric Genomics Consortium NPA group.

What are pathways?

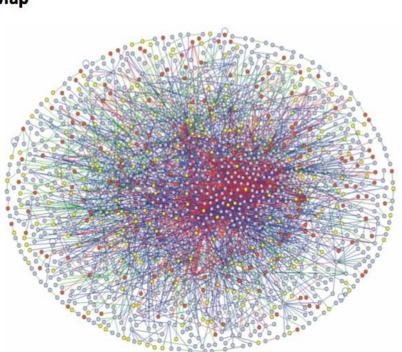
Purine Biosynthesis	ATP	ADP	Adenosine	
AMP	dATP	dADP	Adenine	
	GTP	GDP	Guanosine	
GMP	dGTP	dGDP	Guanine	

What are pathways?

- You might say pathways don't exist....
- A view of the myriad of interactions underlying a biological process

Tension of Opposites: Manually Curated vs HT Experimental

Human Protein Interaction Map

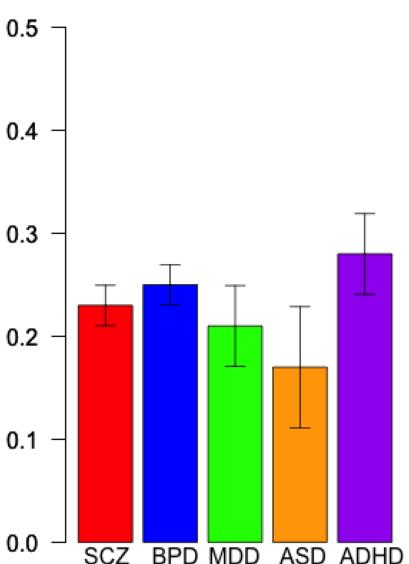

The nodes are all known protein

The links stand for physical binding of pairs of proteins

Screened by yeast 2 hybrid interaction mating

A group of proteins may form a functional protein complex

1705 Proteins 3186 Interactions


Stelzl et. al. A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome. Cell 2005 122: 957-968

Pathway resources

- Public tools
- Curated
- Automated
- Linking up multiple resources
- Text mining
- Available as part of a company website
- •Sigma Aldrich PathFinder

SNP-chip-heritability

<<half twin heritability captured by GWAS (except perhaps for MDD)

Epistasis – statistically impossible to detect with current sample sizes.

Epigenetics – perhaps

Phenotype definition – yes, in psych disorders early onset is >>environmental than older cases.

Untagged rare variants – yes but is the increase in effect size enough to overcome loss of power.

De-novo variants – yes. Many examples in Autism, Schizophrenia but small % variance explained.

Biology – forget all that – what is the underlying biology of the thousands of variants causing this amount of heritability.

A Note of Caution

Table below shows GSEA type pathway analysis on a best SNP per approach, genome wide

W	TCCC Bip	olar Disor	der	Best p-value per gene					
	Pathway	Nominal P	FDR						
	GO0007411	< 1e-3	0.003	Axon growth cone guidance					
	hsa04510	< 1e-3	0.005	Focal adhesion					
	hsa00040	< 1e-3	0.006	Pentose and glucuronate interconversions					
	GO0019198	< 1e-3	0.006	The catalysis of phosphate removal from a phosphotyrosine using aspartic acid as a nucleophile in a metal-dependent manner					
	GO0003779	< 1e-3	0.028	Membrane associated actin binding					
	hsa04512	< 1e-3	0.031	ECM-receptor interaction					
	Sklar et al.								

PathwayNominal PFDRGO0007411< 1e-3</td>0.025Axon growth cone guidance

Genetics Falsifying the Results

	T1D	T2D	RA	HT	CAD	CD	BP
GO0007411	0.004	0	0.004	0.001	0	0.002	0
hsa04510	0.081	0.037	0.143	0.001	0.021	0.003	0.095

FDRs for these two pathways in all the WTCCC GWAS datasets

What happens if you make gene size the statistic?

S=0.705 S=0.827 S=0.742 S=0.742 S=0.744 S=0.843 S=0.701 S=0.716 S=0.755 S=0.690 S=0.691 S=0.751

S=0.714

S=0.667 S=0.798

S=0.690 S=0.692 S=0.646

ES=0.687

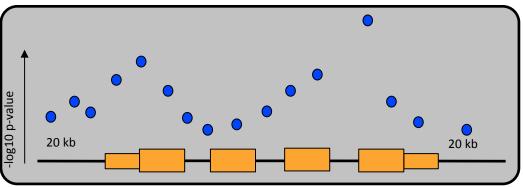
NES=2.500

Size=172
Size=64
Size=127
Size=129
Size=100
Size=40
Size=138
Size=124
Size=74
Size=129
Size=129
Size=147
Size=68
Size=94
Size=156
Size=43
Size=116
Size=113
Size=178
Size=80
Size=189
Size=179
Size=77
Size=33
Size=85
Size=74
Size
Size=25
Size=70

NES=4.622	NominalP=0.000	FDR=0.000	FWER=0.000
NES=4.609	NominalP=0.000	FDR=0.000	FWER=0.000
NES=4.580	NominalP=0.000	EDR=0.000	FWER=0.000
NES=4.428	NominalP=0.000	FDR=0.000	FWER=0.000
NES=3.959	NominalP=0.000	FDR=0.000	FWER=0.000
NES=3.729	NominalP=0.000	FDR=0.001	FWER=0.006
NES=3.718	NominalP=0.000	FDR=0.001	FWER=0.007
NES=3.718	NominalP=0.000	FDR=0.001	FWER=0.007
NES=3.639	NominalP=0.000	FDR=0.001	FWER=0.009
NES=3.544	NominalP=0.000	FDR=0.002	FWER=0.016
NES=3.505	NominalP=0.000	FDR=0.002	FWER=0.018
MES=3 468	NominalP=0 007	EDR=0 000	EWER=0 010

Top Pathway is Calcium signaling pathway, second is AmiGO Axon Guidance, Third is another (KEGG) Axon Guidance, etc...

NominalF=0.006 FDR=0.051


ES=0.714	NC3-3,149	Nominati -0.000	FDK-0.000	FWER-0.094
ES=0.647	NES=3.132	NominalP=0.000	FDR=0.006	FWER=0.102
ES=0.640	NES=3.007	NominalP=0.000	FDR=0.009	FWER=0.157
ES=0.716	NES=2,993	NominalP=0.000	FDR=0.009	FWER=0.168
ES=0.810	NES=2,992	NominalP=0.001	FDR=0.009	FWER=0.169
ES=0.699	NES=2,925	NominalP=0.000	FDR=0.012	FWER=0.214
ES=0.710	NES=2.878	NominalP=0.002	EDR=0.014	FWER=0.256
			913	FWER=0.256
ΔΙνησικά		nttw/pro	916	FWER=0.298
Aivays	UJC JU	oftware	924	FWER=0.424
-			923	FWER=0.425
			923	FWER=0.442
Writte	en for (928	FWER=0.511
			929	FWER=0.532
		_	929	FWER=0.551
nathu	(a)		932	FWER=0.594
Dathw	dv dna	alysis!!	935	FWER=0.633
			937	FWER=0.656
ES=0.804	NES=2.573	NominalP=0.001	FDR=0.038	FWER=0.677
FC-0.007	NEC-D FOO	New Avena Dec. 000	500-0 054	

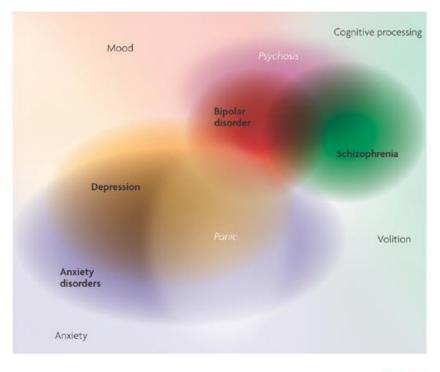
FWER=0.804

Two Main routes.

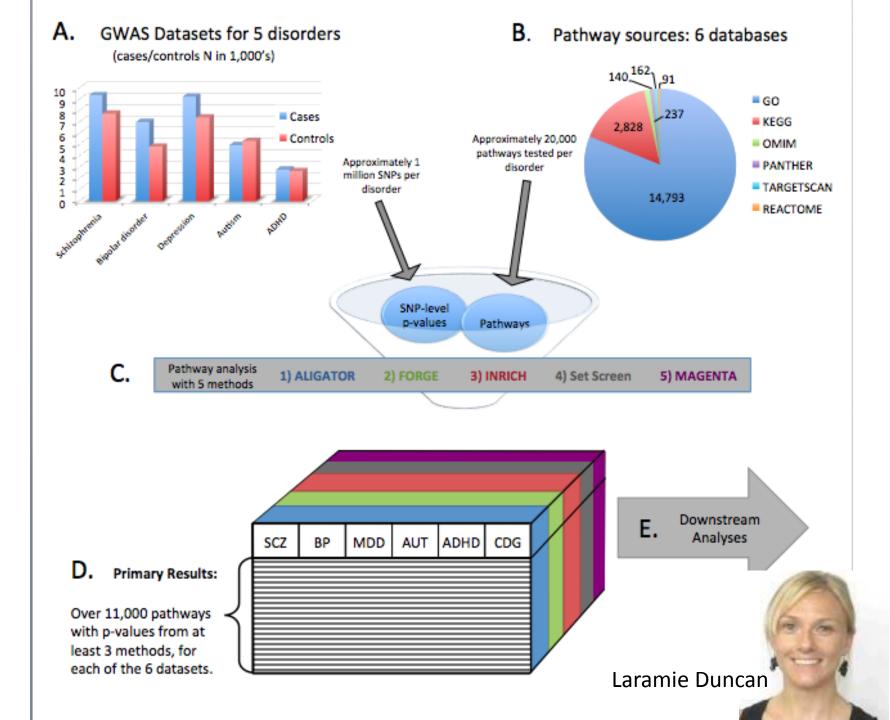
Gene-wise first

- Derive a gene wide statistic.
- Then assess gene sets using many possible methods.

- * Correct min p-value (e.g. Sidak)
- * Threshold
- * Combine p-values (e.g. Fisher's method)


Direct Gene-set analyses

• Treat a pathway as one large gene.


I. Pedroso, G. Breen, in Gene Set Analysis and Network Analysis for Genome-Wide Association Studies, A. Al-Chalabi, L. Almasy, Eds. (Cold Spring Harbor Laboratory Press, 2009)

PGC CDG GWAS Pathway Analysis

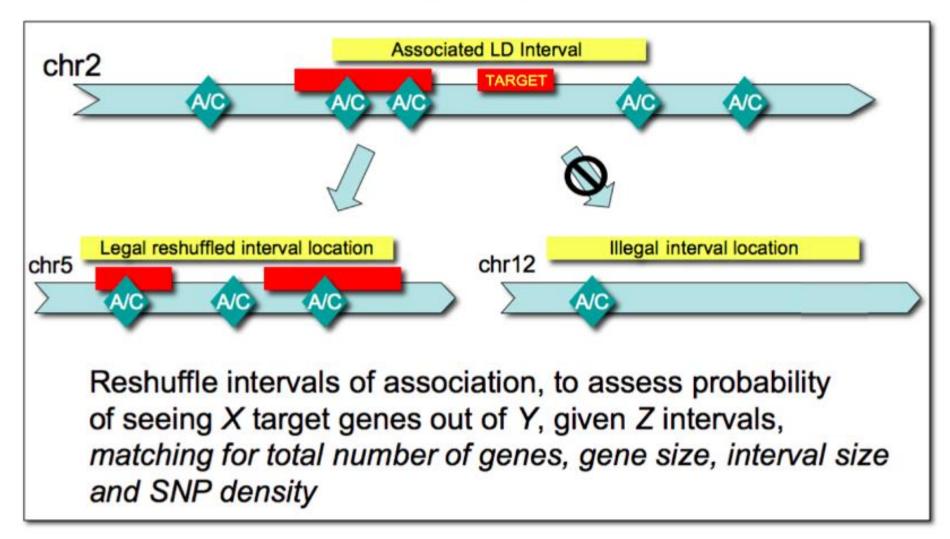
- 5 methods
- 5 diseases
- Schizophrenia
- Manic Depression
- Major Depression
- Autism
- ADHD

Nature Reviews | Genetics

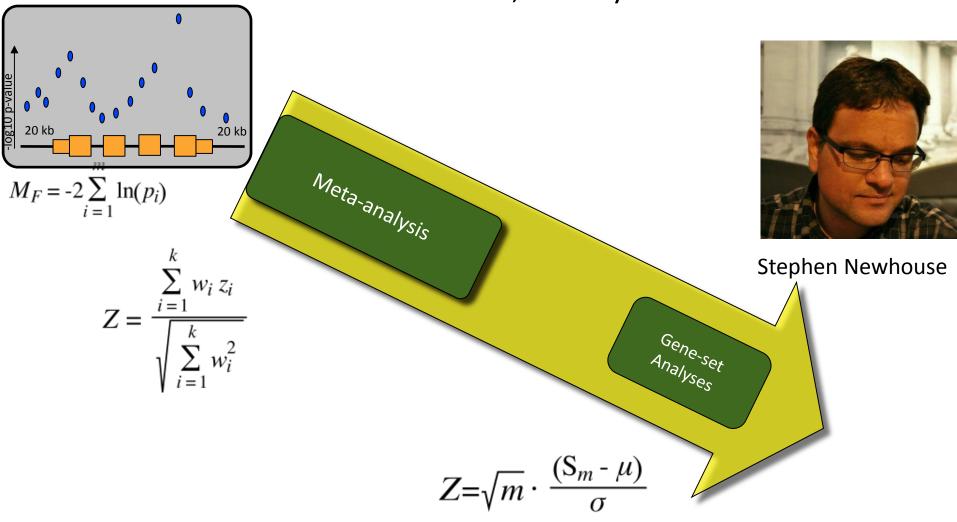
Methods

- The combined GWAS dataset of the five disorders comprised 61,220 case and controls.
- We are using pathway methods on these data.
- For all methods, we used a consensus set of pathways from a range of sources and a consensus set of genes with defined boundaries.
- We compared the intersections of the results of both pathways and of pathways across diseases.

Samples


- The combined GWAS dataset of the five disorders comprised 60K case and controls.
- Major Depression (9,227 / 7,383)
- Manic Depression (Bipolar Disorder) (6,990/ 4,820)
- Schizophrenia (9,370 / 7,736)
- Autism (4,949 / 5,314) Trios
- Attention Deficit Hyperactivity Disorder (ADHD) (2,787/ 2,635) Trios

Pathway Analysis Methods


Thresholded best/number in gene/region methods ALIGATOR INRICH MAGENTA Gene-wide/Pathway-wide methods Set-screen test FORGE

INRICH: interval enrichment

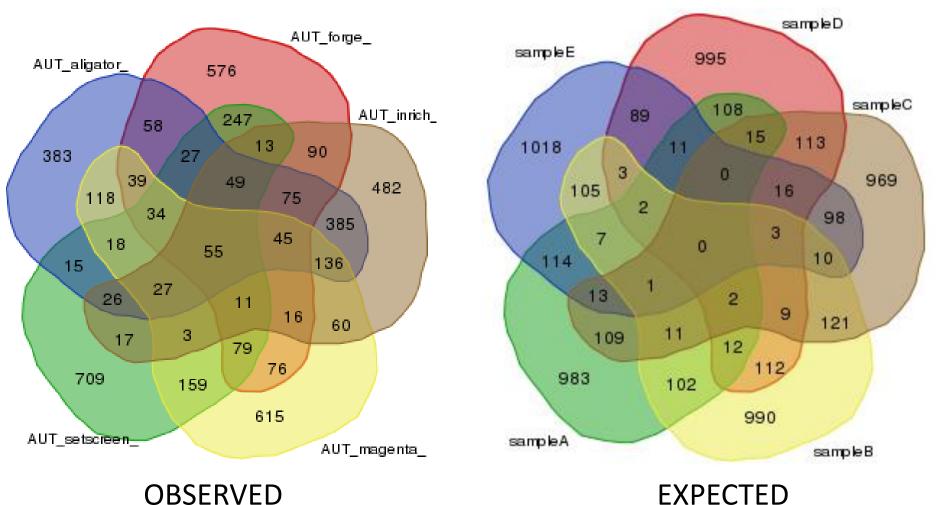
"Do we see more associated genes in set X compared to chance?"

FORGE: gene p-values by LD corrected metaanalysis and GSA Pedroso....Breen et al., Biol Psych 2012

Pre-defined pathway databases

- Public databases
 - KEGG
 - GO
 - Reactome
 - PANTHER
 - OMIM
 - Targetscan
- Custom databases available to the group
 Synaptic gene database (Danielle Posthuma)

Details on Databases

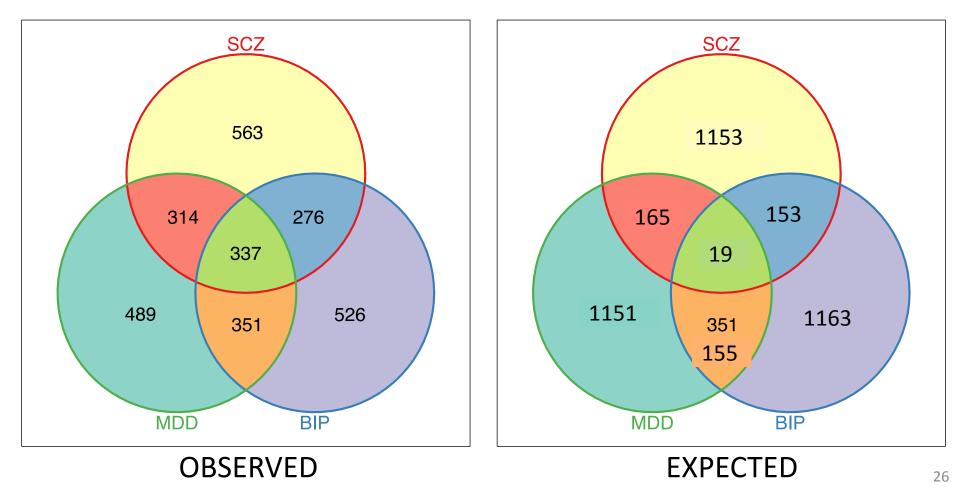

Database	Method	Details
KEGG	Expert curation	Metabolism Genetic Information Processing Environmental Information Processing Cellular Processes Organismal Systems Human Diseases Drug Development
GO	Expert curation	Controlled vocabulary: associated biological processes, cellular components and molecular functions
Reactome	Expert curation	Reactions Pathways
PANTHER	Expert curation	Primarily signaling pathways
OMIM	Repository	All known Mendelian disorders
TargetScan	Computation al prediction	Computational prediction of microRNA target genes based on context score, which is a function of site-type, 3' pairing, local AU content, and position

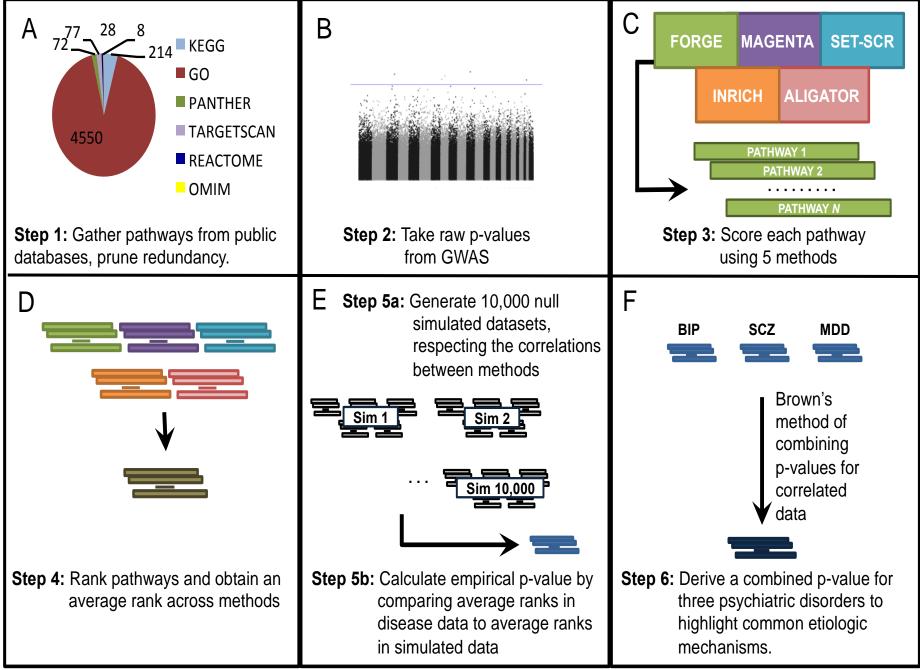
Databases – lots of them and lots of work

	Database	# Genes covered	# Pathways	Median Pathway Size (min-max)	Link to Histogram
(Com)	KEGG	5952	232	52 (1-1131)	<u>Pathway Size -</u> <u>KEGG.pdf</u>
AST	GO	8589	7112	2 (1-2407)	<u>Pathway Size -</u> <u>GO.pdf</u>
Colm O`Dushlaine Lizzy Rossin	Reactome	4539 5077	3526 (Reaction) 1086 (Pathway)	3 (1-434) 14 (1-934)	<u>Reaction Size -</u> <u>Reactome.pdf</u>
	PANTHER	2170	140	16 (1-287)	<u>Pathway Size -</u> <u>PANTHER.pdf</u>
100	OMIM	6983	4712	2 (1-22)	<u>Pathway Size -</u> <u>OMIM.pdf</u>
	TargetScan	11095	162	173 (1-1240)	<u>Pathway Size -</u> <u>TargetScan.pdf</u>

Methods Comparison

• What is the overlap in the top 10% of pathways?


Comparing methods and disorders


- Each method has its advantages.
- Underlying genetic architecture.
- Decided to go down CNV route.
- Comparing Disorders:
- BIPOLAR, MDD, SCZ
- Autism and ADD (PGC1 versions) are less well powered, making comparisons difficult

Phil Lee

PGC Disorders

- SCZ, BIPOLAR and MDD are well-powered
- Overlap in the top 10% of pathways? (INRICH)

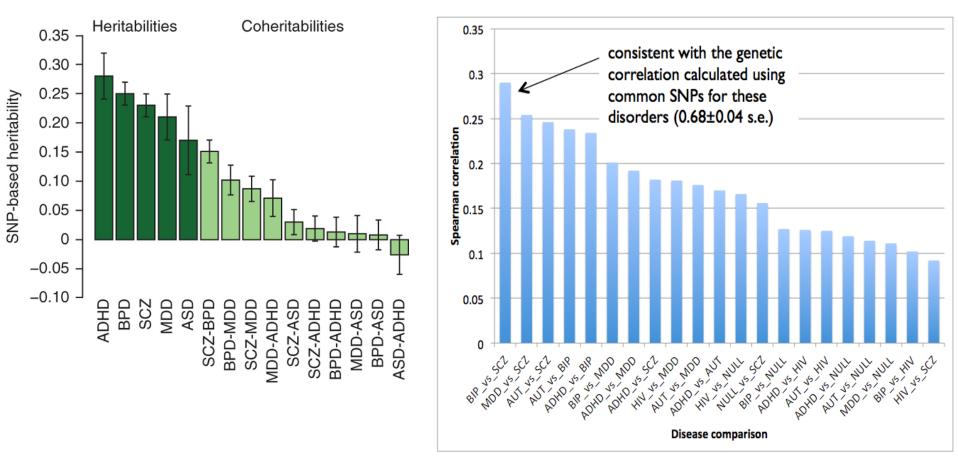
Datasets

- PGC-CDG datasets
- Dataset are independent
- Null dataset (simulated from HapMap)
- SNPs with MAF>0.01 and info >0.8
- Analysis restricted to protein-coding genes
- Window around genes: 35-10kb (eQTL RNAseq)
- Analysis without MHC

Obtaining significance of enrichments (1)

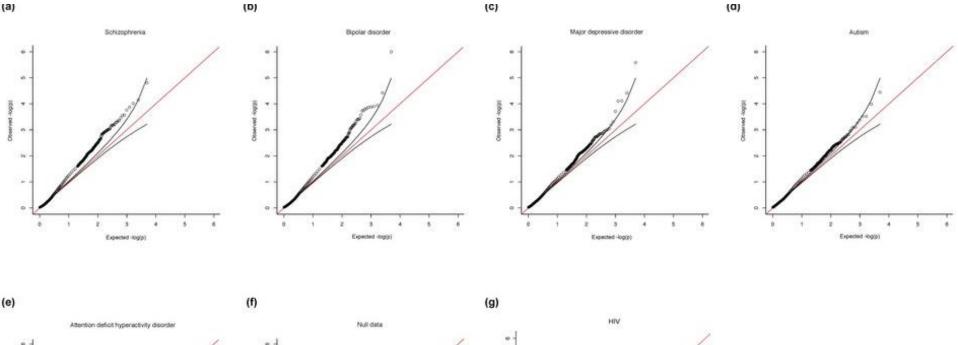
- Rank pathways by enrichment p-value for each method
- Measure of enrichment: average rank
- Calculate correlations of p-values for each pair of methods using null dataset
- Generate 1,000,000 sets of 6 uniform variates with these pairwise correlations
- Generate a replicate "study" by sampling one of these sets for each pathway (corresponding to enrichment p-values)

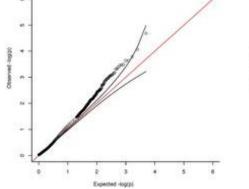
Peter Holmans

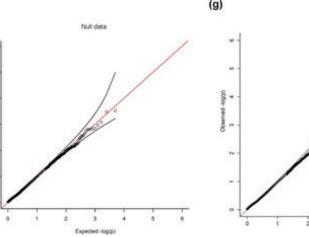

Obtaining significance of enrichments (2)

- Rank pathways by enrichment p-value within each method
- Compare average rank to that in the real data
- Repeat 1,000,000 times to obtain pathway-specific enrichment p-value for each pathway
- Correction for multiple testing of pathways: q-value

Peter Holmans


Pathway correlations between disordered resemble GREML bivariate analyses.

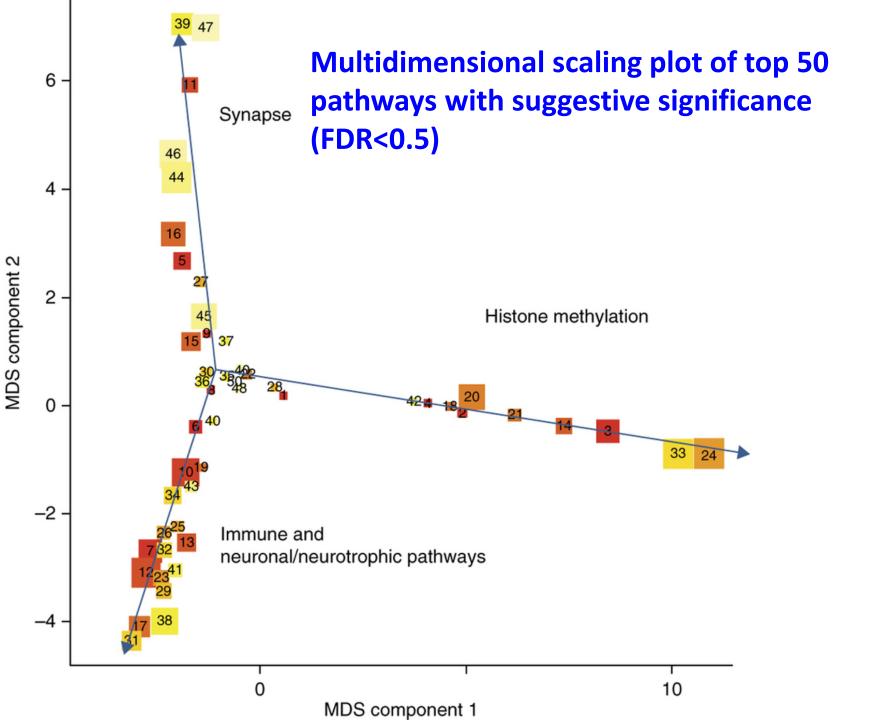



Top Pathways

- Results from a combined analysis of 5 methods on the 5 PGC1 CDG datasets but we focused on the three adult disorders.
- Overlapping controls and cases removed.
- The following slides list the top pathways by FDR Q-value.
- Thus, the results reflect the average across the 5 methods used.
- The results follow the typical PGC pattern but are more exciting and positive than we expected.
- We defined significant q-values as <0.05 and suggestive <0.5.
- We excluded the MHC region (high-LD genes also in that region on chromosome 6)

QQ plots for each disorder and for HIV and Null sets Order is (a) SCZ, (b) BIP, (c) MDD, (d) AUT, (e) ADD, (f) null data from permutations and, (g) HIV.

Meta-analysis of the pathway results SCZ, BIP, MDD 16 pathways with a FDR <0.05, 49 with an FDR<0.1.

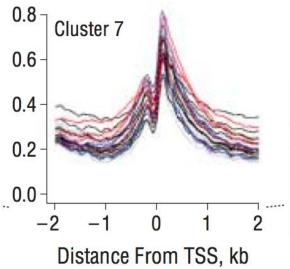

# methods	Av. rank	p rank	q-value	Pathway ID	Description		
BIP							
5	17	1.01E-06	0.005	GO:51568	histone H3-K4 methylation		
5	50.4	3.82E-05	0.093	path:hsa05218	Melanoma		
5	79.2	1.16E-04	0.093	GO:7129	(chromosomal) synapsis		
5	81.8	1.27E-04	0.093	path:hsa05213	Endometrial cancer		
5	83.3	1.34E-04	0.093	P00003	Alzheimer_disease-amyloid_secretase_pathway		
5	83.4	1.35E-04	0.093	path:hsa05215	Prostate cancer		
5	87	1.50E-04	0.093	path:hsa05216	Thyroid cancer		
4	89.5	1.59E-04	0.093	GO:90066	regulation of anatomical structure size		
5	95.6	1.81E-04	0.093	path:hsa05214	Glioma		
5	96.9	1.87E-04	0.093	GO:70192	chromosome organization involved in meiosis		
				scz			
5	38.4	1.58E-05	0.078	GO:14069	postsynaptic density		
5	68.6	7.15E-05	0.160	GO:45211	postsynaptic membrane		
5	76.8	9.67E-05	0.160	GO:43197	dendritic spine		
5	85.4	1.36E-04	0.168	GO:51568	histone H3-K4 methylation		
5	95.8	1.74E-04	0.173	GO:33267	axon part		
				MDD			
5	25.4	2.63E-06	0.012	GO:8601	protein phosphatase type 2A regulator activity		
5	54.6	3.88E-05	0.092	GO:34330	cell junction organization		
5	68.8	7.70E-05	0.094	GO:43297	apical junction assembly		
5	70	7.92E-05	0.094	GO:45216	cell-cell junction organization		
5	99.8	1.97E-04	0.186	GO:31056	regulation of histone modification		

What are key difference in meta-analysis of Pathway Results?

- Each disorder gave promising but not statistically compelling evidence for pathway association.
- Analyse each disorder's pathways and then combine and meta-analyse.
- May be much more powerful than SNP meta analysis.
- Robust to
 - Allelic heterogeneity within GENES and within PATHWAYS across diseases.
 - Allows for a multitude of weaker effects.
 - Modulation of the pathways can differ across disorders.

Meta-analysis of the pathway results SCZ, BIP, MDD 16 pathways with a FDR <0.05, 49 with an FDR<0.1.

	Pathway Level Meta Analysis across three disorders.							
BIP	MDD	SCZ	Combined P	Q Value	Pathway ID	Description		
0	0.0592	0.0001	5.75E-08	0.0003	GO:51568	histone H3-K4 methylation		
0.0004	0.05	0.0006	1.46E-05	0.0362	GO:16571	histone methylation		
0.0004	0.1462	0.0011	4.73E-05	0.0414	GO:43414	macromolecule methylation		
0.0008	0.063	0.0014	5.10E-05	0.0414	GO:34968	histone lysine methylation		
0.42	0.0001	0.0023	5.58E-05	0.0414	GO:45216	cell-cell junction organization		
0.0001	0.091	0.0064	5.69E-05	0.0414	P00003	Alzheimer_disease- amyloid_secretase_pathway		
0.0007	0.0495	0.0024	5.86E-05	0.0414	P04393	Ras_Pathway		
0.312	0	0.1286	7.12E-05	0.0422	GO:8601	protein phosphatase type 2A regulato activity		
0.898	0.0001	0.0017	7.83E-05	0.0422	GO:43297	apical junction assembly		
0.0013	0.0207	0.0055	9.25E-05	0.0422	P00052	TGF-beta_signaling_pathway		
0.489	0.0203	0	9.53E-05	0.0422	GO:14069	postsynaptic density		
0.0085	0.0009	0.0239	0.0001	0.0422	GO:32869	cellular response to insulin stimulus		
0.0188	0.0054	0.0022	0.0001	0.045	P00010	B_cell_activation		
0.0023	0.2988	0.0003	0.0001	0.045	GO:8757	S-adenosylmethionine-dependent methyltransferase activity		
0.0073	0.008	0.0044	0.0001	0.0454	GO:23061	signal release		
0.459	0	0.0168	0.0002	0.0473	GO:34330	cell junction organization		


Chromatin and histones

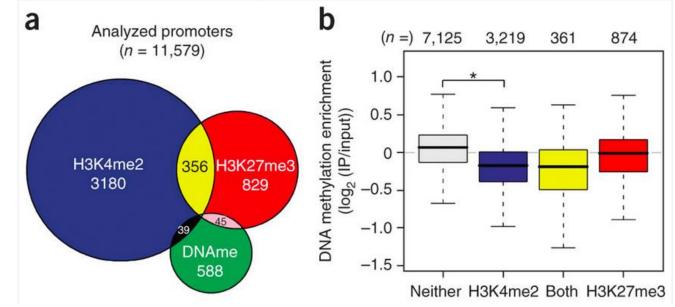
- Chromatin is the combination of DNA and proteins that make up the contents of the nucleus of a cell.
- The primary protein components of chromatin are histones that compact the DNA.
- Five major families of histones exist: H1/H5, H2A, H2B, H3 and H4.
- Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins of chromosomes.
- Methylation can modify histones so that different portions of chromatin are activated or inactivated – turning genes in DNA "off" and "on".

Histone Methylation

- Replicated environmental risks for SCZ occur in 1st trimester when the epigenome is known to be particularly labile.
- Rapid cell-replication is occurring and the standard epigenetic signals, including histone H3-K4 and lysine methylation are being laid down.
- Dysregulation in histone methylation pathways is indicated as a key common etiological mechanism for adult psychiatric disorders.
- Animal studies where prefrontal dysfunction and defects in learning and memory are induced in a gene knockout of a histone methyltransferase *MLL1*.

In the Genome

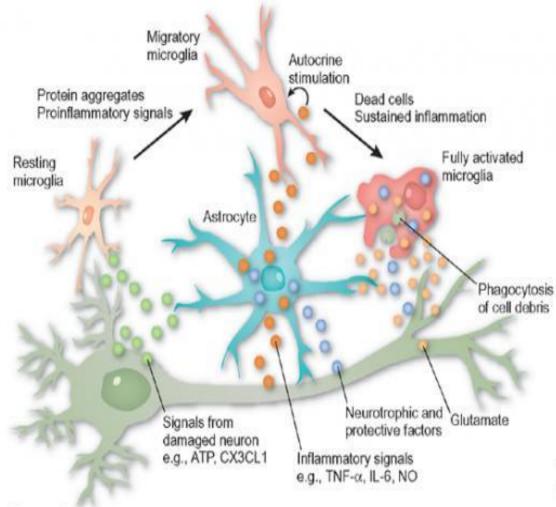
Figure 2: DNA methylation of CpG islands is mutually exclusive with H3K4 methylation in sperm.


From

Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa Urszula Brykczynska, Mizue Hisano, Serap Erkek, Liliana Ramos, Edward J Oakeley, Tim C Roloff, Christian Beisel, Dirk Schübeler, Michael

B Stadler & Antoine H F M Peters

Nature Structural & Molecular Biology 17, 679-687 (2010) | doi:10.1038/nsmb.1821


Figure 2: DNA methylation of CpG islands is mutually exclusive with H3K4 methylation in sperm.

Chrom	Start	End	Name
chr7	104,654,636	104,754,531	MLL5
chr7	151,832,009	152,133,090	MLL3
chr16	30,968,614	30,995,985	SETD1A
chr19	36,208,920	36,229,458	AD000671.1
chr1	205,055,269	205,091,143	RBBP5
chr11	118,307,227	118,395,411	MLL
chr8	37,963,010	37,997,225	ASH2L
chr12	122,242,637	122,270,562	SETD1B
chrX	44,732,422	44,971,843	KDM6A
chr18	47,808,712	47,814,674	CXXC1
chr7	154,735,519	154,794,621	PAXIP1
chr2	32,249,170	32,264,874	DPY30
chr3	52,288,436	52,312,659	WDR82
chr12	49,412,757	49,449,107	MLL2
chr9	137,001,209	137,025,090	WDR5

Immune Pathways

- Immense literature and GWAS for MHC region but we excluded it.
 - (a) genomic history and LD & (b) are other immune processes involved?
- Field clouded by somewhat controversial studies and concerns that finding confounded by/downstream of severe adverse environment.
- Genetic indications cleaner evidence overall trait not state.
- Notable basic immunological pathways here:
 - TGF-beta_signaling (P00052)
 - B_cell_activation (P00010)
 - T_cell_activation (P00053)
- KEGG Infectious Disease pathways:
 - Tuberculosis (hsa05152)
 - Hepatitis C (hsa05160)
 - Chagas disease (American trypanosomiasis, hsa05142).

Damaged neuron

Immune pathways/components, Complement etc. have essential housekeeping and barber/hairdressers roles in the brain.

Makes for good stories:

- INFα treatment causes acute depression in about a third of recipients.
- Both HepC infection & INFα treatment associate with a range of additional neuropsychiatric symptoms.
- Chagas diseases cause stroke but phenothiazines such as chloropromazine are effective treatments in animal studies.

Effects on gene expression

- Examine whether top pathway genes that are associated with BIP+MDD+SCZ are enriched with brain expression regulatory SNPs (e.g., eQTLs, mQTLs)?
- Brain Co-expression networks

Top 10 pathway: genes

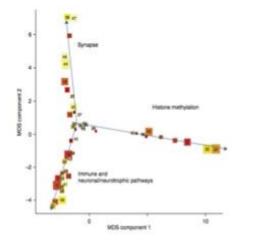
Pathway ID	Description	Ensembl ^a Gene #
GO:51568	histone H3-K4 methylation	15
GO:16571	histone methylation	55
P04393	Ras_Pathway	68
P00003	Alzheimer_disease-amyloid_secretase_pathway	66
GO:45216	cell-cell junction organization	111
P00052	TGF-beta_signaling_pathway	90
GO:14069	postsynaptic density	100
GO:34968	histone lysine methylation	44
P00010	B_cell_activation	59
GO:43414	macromolecule methylation	132
Top.10.path	Top 10 pathways	556

Brain eQTL/mQTL datasets

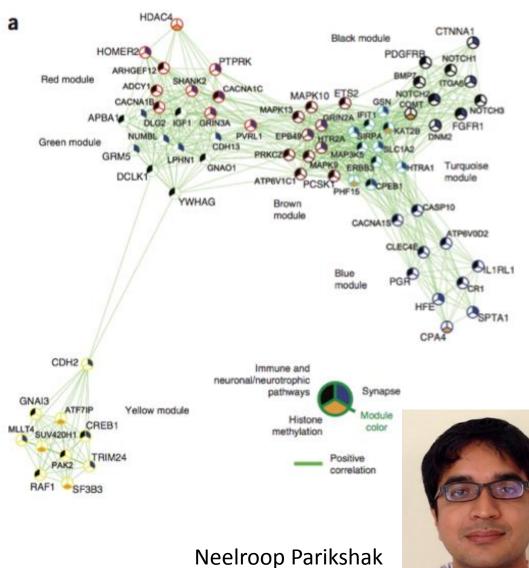
Src	Ref	Brain Region	Subject #	Expression	Genotype	1KG imputed
	Myers 2007	Cortex ^a	193	GSE8919	Affy 500k	yes
	Gibbs 2010	FTCX, TCTX	150	GSE15745	lllumina HapMap550	yes
Meta Brain cis-eQTL (<i>In prep</i>)	Webster 2009	Cortex ^a	176	GSE15222	Affy 500k	yes
(p. cp)	Colantuoni 2011	DPFC	112	GSE30272	Illumina 1M; HumanHap650	yes
	2,973 cis eQTL LD blocks with p < 1e-06 (kb=250; r2=0.4; clump-p1=1e-06; clump-p2=1e-04)					
UK Neurochip	michael.weale@kcl.ac.uk; 1KG imputed; 134 subjects; 10 brain regions					
cis/trans eQTL	20,616 cis/trans eQTL LD blocks with FDR 1% (kb=250; r2=0.4)					

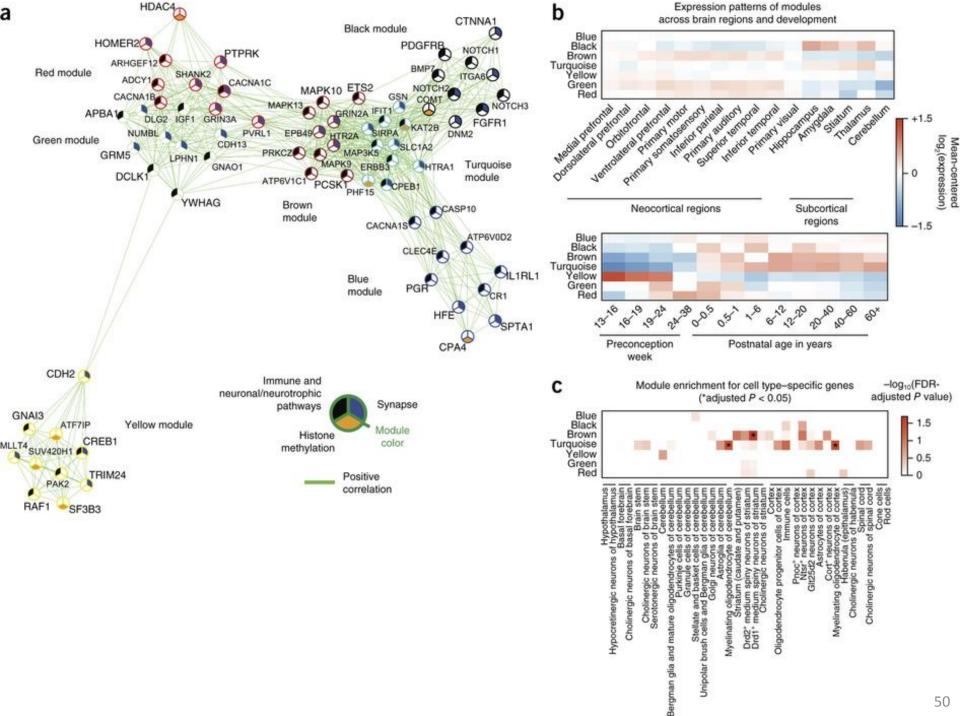
Enrichment tests (Phil Lee)

For each of top pathways,

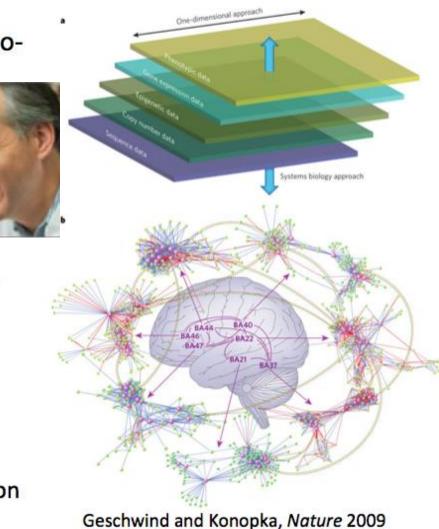

- Extract LD-independent SNPs located in top 10 pathway genes (35/10K) with cdg3 meta-p < 5e-03
- 2) Count the # of brain eQTL LD-blocks overlapping with the pathway SNPs selected from (1).
- 3) Randomly select the same number of LD-independent SNPs associated with genic regions (N=20,007; 35/10K boundary) that satisfies the association significance (cdg3-*p*<5e-03) and matching MAF
- 4) Repeat (3) 100K times to assess the significance of the overlap from (2).
- 5) If significant,
 - 1) Replicate with the UK NeuroChip eQTL data
 - 2) Investigate non-brain disorders as negative examples

Enrichment testing results


BIP/MDD/SCZ-associated methylation pathway genes are enriched with brain eQTLs, which suggests that their common disease mechanisms may involve misregulation of the pathway genes en masse at the genetic level.


Pathway ID	Pathway Name	Ensembl ^a	Meta-brain cis eQTLs
		Gene #	<i>p</i> <5e-03
GO:51568	histone H3-K4 methylation	15	0.00339966
GO:16571	histone methylation	55	0.0019998
P04393	Ras_Pathway	68	1
P00003	Alzheimer_disease- amyloid_secretase_pathway	66	0.89621
GO:45216	cell-cell junction organization 111		0.9976
P00052	TGF-beta_signaling_pathway	90	0.879612
GO:14069	postsynaptic density	100	0.722728
GO:34968	histone lysine methylation	44	0.00019998
P00010	B_cell_activation 59 0.958		0.958
GO:43414	macromolecule methylation 132		0.00529947

Brain Gene Co-expression Networks


- PGC pathways pipeline identified GWA enriched pathways
- Used genes in pathways to perform a supervised coexpression network analysis
- Characterized subsets of genes based on co-expression (the modules) for temporal specificity, regional specificity, cell-type specificity

Categories of "functional" genomics

- Differential gene expression (DGE) and coexpression gene lists related to:
 - Brain regions
 - Developmental time points
 - Cell types
 - Diseases
- Molecular regulatory relationships
 - Transcriptional and chromatin regulator binding targets
 - RNA binding protein targets
- Genes identified by other avenues
 - Genes under evolutionary constraint
 - Regions of differential methylation
 - ChIP-seq regulated regions will come soon

Assembly of Information

- DGE and co-expression gene list sources:
 - Region and time points: <u>Kang et al., 2011</u>* (spans 8 weeks post-conception to > 60 years of age, 16 brain regions, few individuals per time point); <u>BrainSpan data</u> (subset of Kang et al. samples)
 - Regions only: <u>Hawrlycz et al., 2012</u> (few individuals, 100s of regions)
 - cis-eQTLs: <u>Ramasamy et al., 2014</u> (10 brain regions, N ~ 100); <u>CommonMind data</u> (hundreds of individuals, many SCZ)
 - Cortical laminae: <u>Miller et al., 2014</u> (laser capture microdissection [LCM] in fetal human);
 <u>Bernard et al, 2012</u> (LCM in macaque)
 - Cell types: <u>Doyle et al., 2008</u>* (bacTRAPin mouse); <u>Zhang et al., 2014</u> (FACS in mouse); <u>Molyneux et al., 2015</u> (RNA-seq of fixed cells in mouse)
 - Regulators: <u>Darnell et al., 2011 (FMRP in mouse</u>); <u>Weyn-Vanhentenryck et al., 2014</u> (RBFOX1 in mouse); <u>Sugathan et al., 2014</u> (CHD8 in human)... depending on criteria, there can be many more

*Used in Nat Neuro PGC pathways paper From human unless otherwise specified Geschwind lab has used most of these lists in previous work, can verify they are high quality.

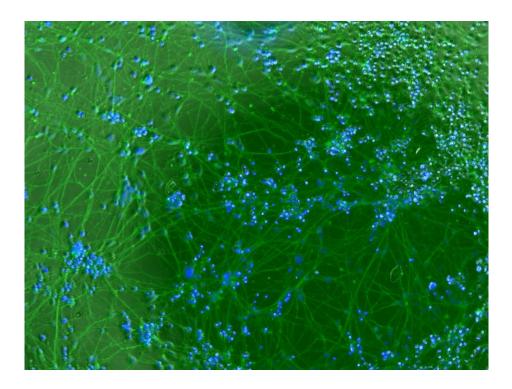
Disease gene lists: a far more mixed picture

Disease	Sub Cases	jects Ctrl	Brain Region	Platform	Study
ACD	14	14	BA9, BA41	Illumina Ref8 v3	Voineagu et al., <i>Nature</i> 2011 474(7351):380-4
ASD	5	6	BA41/42	Affy HG-U133 plus2	Garbett et al., Neurobiol Dis 2008 30(3):303
	50	44	Parietal cortex	Affy HuGene 1.0 ST	Chen et al., Mol Psychiatry 2013 18(12):1308-14
	12	16	BA46	Affy HG-U133 plus2	Lanz (GSE53987)
SCZ	24	21	BA10	Affy HG-U133 plus2	Maycox et al., <i>Mol Psychiatry</i> 2009 14(12):1083-94
	32	29	BA46	Affy HG-U133A	Iwamoto et al., Hum Mol Genet 2005 14(2):241-53
	23	28	BA46	Affy HG-U133 plus2	Narayan et al., <i>Brain Res</i> 2008 1239:235-48.
	36	44	Parietal cortex	Affy HuGene 1.0 ST	Chen et al., <i>Mol Psychiatry</i> 2013 18(12):1308-14
BD	16	16	BA46	Affy HG-U133 plus2	Lanz (GSE53987)
	23	29	BA46	Affy HG-U133A	Iwamoto et al., Hum Mol Genet 2005 14(2):241-53
	17	16	BA46	Affy HG-U133 plus2	Lanz (GSE53987)
MDD	51	52	BA9, BA25	Affy HG-U133 plus2	Chang LC et al., <i>PLoS One</i> 2014 9(3):e90980
AD	41	36	BA3, BA11	Affy HG-U133 plus2	Blair et al., <i>J Clin Invest</i> 2013 123(10):4158-69
ETOH	17	15	Superior frontal cortex	Illumina HumanHT-12 V3	Ponomarev et al., J Neurosci 2012 32(5):1884

53

Suggested approach to integrate functional gene sets

- Initial phase:
 - Use pre-computed (from Supplemental Methods of respective papers) or Geschwind lab generated lists from datasets in slide 6 as pathways in PGC pathways part 2 (code will be provided for future lists)
 - Get SCZ specific networks and lists for PGC pathways paper on SCZ?
 - Utilize Mike's cross-disorder gene expression lists and networks to perform a pathway analysis for his manuscript using the existing PGC data?
- Future suggestions:
 - Re-process large datasets from raw data for more uniform results, include newer RNA-seq datasets
 - Define modules in co-expression networks using shared genetic signals


Collaboration opportunities?

- Improving the ontology
 - Adding or removing synapse-related concepts
 - Adding or removing relationships between concepts
- Improving the annotations
 - Adding (and even removing) annotations for genes

55

Connectivity Map – NIH LINCS Program

"links gene patterns associated with disease to corresponding patterns produced by drug candidates"

Neuronal Stem Cell Model Picture Opposite is from one well of a 384 cell culture plate.

Each of 5000 drugs by 3 replicates run on a cut down gene expression assay.

Data mining and comparison with disease models.

PGC Renewal

- We are writing a section called "Pathways to Therapeutics" of the PGC NIH renewal.
- Idea is work with a group of pharma in precompetitive space on doing drug pathway analyses.
- Lilly, Pfizer, Roche, others please let me know.

Conclusions

Overall our analyses have shown the potential power of GWAS pathway analyses for the discovery of novel aetiology.

Immune and histone methylation findings show how genetic risk aggregates in pathways that may underlie vulnerability to environmental risk factors.

Using Brain Expression data may be a strong complementary approach.

Collaborations with GO and similar resources.

Acknowledgments

Thank you for listening.

The PGC, Pat Sullivan, the PGC Pathway Analysis Group, part.

Liz Rossin, Colm O`Dushlaine, Phil Lee, Laramie Duncan and Peter Holmans.

The UK NIHR and MRC for funding.