PGC Worldwide Lab Call Details

DATE: Friday, June 12th, 2015

PRESENTER: Benjamin Neale, PhD, from MGH, HMS & the Broad

- TITLE: "Brainstorm: Integrating Genome-Wide Association Results from Neurology and Psychiatry."
- **START:** We will begin promptly on the hour.

1000 EDT - US East Coast 0700 PDT - US West Coast 1500 BST - UK 1600 CEST - Central Europe 2400 AEST – Australia (Midnight into Saturday, June 13th, 2015)

DURATION: 1 hour

TELEPHONE:

- US Toll free: 1 877 703.6109
- International direct: +1 617 399.5126
- Toll-free number? See http://www.btconferencing.com/globalaccess/?bid=288_attended
- Operators will be on standby to assist with technical issues. "*0" will get you assistance.
- This conference line can handle up to 300 participants.

Lines are Muted **NOW**

Lines have been automatically muted by operators as it is possible for just one person to ruin the call for everyone due to background noise, electronic feedback, crying children, wind, typing, etc.

Operators announce callers one at a time during question and answer sessions.

Dial *1 if you would like to ask a question of the presenter. Presenter will respond to calls as time allows.

Dial *0 if you need operator assistance at any time during the duration of the call.

UPCOMING PGC Worldwide Lab

DATE: Friday, September 11th, 2015

PRESENTER: To Be Announced

TITLE: To Be Announced

START: We will begin promptly on the hour.

1000 EDT - US East Coast

0700 PDT - US West Coast

1500 BST - UK

1600 CEST - Central Europe

2400 AEST – Australia (Midnight into Saturday, September 12th, 2015)

DURATION: 1 hour

Brainstorm: integrating genomewide association results from neurology and psychiatry

Benjamin Neale, Ph.D. Analytic and Translational Genetics Unit, MGH Stanley Center for Psychiatric Research & Program in Medical and Population Genetics, Broad Institute

PGC SCZ, June 2013

Chromosome

Inflated test statistic distribution

- Strong deviation from the null
- Is this population stratification?
- Are these real effects?

LD Score regression

With thanks

Mark Daly

Alkes Price

Lonely SNPs [no LD]

Causal variants

Association

All markers correlated with a causal variant show association

Lonely SNPs [no LD]

Causal variants

Lonely SNPs only show association if they are causal

What happens under polygenicity?

Lonely SNPs [no LD]

Causal variants

Assuming a uniform prior, we see SNPs with more LD friends showing more association

The more you tag, the more likely you are to tag a causal variant

Simulated polygenic architecture Lambda = 1.30 LD score intercept = 1.02

What happens under stratification?

Lonely SNPs [no LD]

Causal variants

Under pure drift we expect LD to have no relationship to differences in allele frequencies between populations

UK controls versus Sweden controls Lambda = 1.30 LD score intercept = 1.32

PGC Schizophrenia

Lambda = 1.48Intercept = 1.06Slope *p*-value < 10^{-300}

Overwhelming majority of inflation is consistent with polygenic architecture

LD Score regression

where N=sample size, M=# of SNPs, a=inflation due to confounding, h²g is heritability (total obs.) and I_i is the LD Score

Bulik-Sullivan et al. Nature Genetics 2015

What about other neuropsychiatric illnesses?

http://www.oneillinstituteblog.org/persistent-stigma-mental-illness/

Brainstorm Project

Brendan Bulik-Sullivan Hilary Finucane Patrick Sullivan Bobby Koeleman Nick Wood Julie Williams Alessandro Biffi Jeremiah Scharf

Kenneth Kendler Stephan Ripke Alkes Price Chris Cotsapas Padhraig Gormley Zhi Wei Rainer Malik Hailiang Huang

Andrea Byrnes Dongmei Yu Laramie Duncan Kai-How Farh Namrata Gupta Miriam Raffeld ...and many, many others in their respective study groups

Brainstorm Project

Psychiatric Disease	Cases	Controls
ADHD	10,714	83,261
Anorexia Nervosa	3,495	11,105
Autism	5,305	5,305
Bipolar	20,352	31,358
Major depression	9,240	9,519
OCD	2,936	7,279
Schizophrenia	33,640	43,456
Tourette	4,220	8,994

Over 200,000 cases

Neurological Disease	Cases	Controls
Alzheimer	17,008	37,154
Early-onset stroke	3,274	11,012
Epilepsy	7,779	20,439
Focal Epilepsy	4,601	17,985
Generalized Epilepsy	2,525	16,244
Intracerebral hemorrhage	1,545	1,481
Ischemic stroke	10,307	19,326
Migraine	59,673	316,078
Migraine with aura	6,332	142,817
Migraine without aura	8,348	136,758
Multiple sclerosis	5,545	12,153
Parkinson	13,708	95,282

Univariate heritability from common variation

- GGE = Generalized Epilepsy
- SCZ = Schizophrenia
- OCD = Obsessive Compulsive Disorder
- AUT = Autism
- TSY = Tourette's Syndrome
- ICH = Intracerebral Hemorrhage
- BPD = Bipolar Disorder
- MDD = Major Depressive Disorder
- ANO = Anorexia Nervosa
- MSC = Multiple Sclerosis
- MWO = Migraine without Aura
- MIG = Migraine
- MWA = Migraine with Aura
- EOS = Early Onset Stroke
- AZD = Alzheimer's Disease
- ADD = Attention Deficit/Hyperactivity
 - = Epilepsy (all)
- ISS = Ischemic Stroke
- NFE = Non-acquired focal epilepsy
- PKD = Parkinson's Disease

Trait 1

Slope estimates heritability

22

We can a second trait and obtain two heritability estimates Trait 1 Trait 2

Trait 1 Trait 2

$$Z^*Z = \chi^2$$

So we can estimate genetic covariance from the product of the Z-scores

 $Z^*Z = \chi^2$

So we can estimate genetic covariance from the product of the Z-scores for the two traits

Trait 1 Trait 2

Here $R_G = 0$

This approach is robust to sample overlap as all variants are equally inflated

Trait 1 Trait 2 R_G

Within psychiatry

Broad sharing of common genetic risk factors across psychiatric illness

* denotes significant correlation

Within neurology

Less sharing within
neurological disease than
psychiatric disease

⁴ NFE genetic correlation is
²⁵ noisy [modest sample size]

* denotes significant correlation

Across neurology and psychiatry

Migraine shows positive genetic correlation with Tourette's Syndrome and ADHD

Limited overlap across domain

* denotes significant correlation

Conclusions

- $\left|\right\rangle$
- Common variants exert influence across neurological and psychiatric disease
- Genetic risk factors in psychiatry do not respect clinical boundaries
- Limited overlap between neurology and psychiatry

Acknowledgements

Verneri Anttila Brendan Bulik-Sullivan Hilary Finucane Stephan Ripke Elise Robinson Psychiatric Genomics Consortium Brainstorm Consortium NIMH NHGRI

Mark Daly Alkes Price Daniel MacArthur All the patients, families, clinicians and study staff that make large-scale genetics studies possible